Data augmentation for pathogen segmentation in vinewood fluorescence microscopy images

Authors

  • Julie Munsch Eiffage énergie systèmes ; IRIMAS, Université de Haute-Alsace
  • Sonia Ouali IRIMAS, Université de Haute-Alsace
  • Jean-Baptiste Courbot IRIMAS, Université de Haute-Alsace
  • Romain Pierron LVBE, Université de Haute-Alsace
  • Olivier Haeberlé IRIMAS, Université de Haute-Alsace

DOI:

https://doi.org/10.60643/urai.v2024p153

Keywords:

data augmentation, image segmentation, fluorescence microscopy, deep learning, machine learning

Abstract

In this paper, we address the problem of segmentation of pathogens within fluorescence microscopy images. To our knowledge, the quantification from such images is an original problem. As a consequence, there is no available database to rely upon in order to use supervised machine learning techniques. In this paper, we provide a workaround by creating realistic images containing the desired filamentary pattern and variable blur effect. Numerical results show the interest of this data augmentation technique, especially on images corresponding to a difficult segmentation.

 

 

, image segmentation, fluorescence microscopy deep learning, machine

Downloads

Published

29.10.2024