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Foreword 

 

Development in the field of artificial intelligence (AI) is making giant strides. Allow me to 

outline some of the areas addressed by the AI sector last year. 

Supervised learning methods continued to dominate industrial AI applications, but they require 

large amounts of (labelled) data, which is time-consuming and costly. Self-supervised learning 

is about assigning data labelling to an AI. Here, experts label only a small amount of data 

manually, which is then used by an AI for the automated labelling of the remaining data. Self-

supervised learning continues to face a number of technical challenges, including the fact that 

machine-labelled data must be of high quality if it is to produce results that are almost as good 

as those arising from manually labelled data.  

In the area of privacy-preserving machine learning, many organisations could potentially benefit 

from sharing data with other, similar organisations to train good models. Health insurers could, 

for instance, work together on solving the automated processing of unstructured paperwork such 

as insurers' claim receipts. The issue here is that organisations cannot share their data with each 

other for confidentiality and privacy reasons, which is why secure collaborative machine learning 

– where a common model is trained on distributed data to prevent information from the 

participants from being reconstructed – is gaining traction. This shows that the biggest problem 

in the area of privacy-preserving machine learning is not technical implementation, but how 

much the entities involved (decision makers, legal departments, etc.) trust the technologies. As 

a result, the degree to which AI can be explained, and the amount of trust people have in it, will 

be an issue requiring attention in the years to come.  

The representation of language has undergone enormous development of late: new models and 

variants, which can be used for a range of natural language processing (NLP) tasks, seem to pop 

up almost monthly. Such tasks include machine translation, extracting information from 

documents, text summarisation and generation, document classification, bots, and so forth. The 

new generation of language models, for instance, is advanced enough to be used to generate 

completely realistic texts.  

These examples reveal the rapid development currently taking place in the AI landscape, so much 

so that the coming year may well witness major advances or even a breakthrough in the following 

areas:  

• Healthcare sector (reinforced by the COVID-19 pandemic): AI facilitates the analysis 

of huge amounts of personal information, diagnoses, treatments and medical data, as 

well as the identification of patterns and the early identification and/or cure of disorders. 

 

• Privacy concerns: how civil society should respond to the fast increasing use of AI 

remains a major challenge in terms of safeguarding privacy. The sector will need to 

explain AI to civil society in ways that can be understood, so that people can have 

confidence in these technologies. 
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• AI in retail: increasing reliance on online shopping (especially in the current situation) 

will change the way traditional (food) shops function. We are already seeing signs of 

new approaches with self-scanning checkouts, but this is only the beginning. Going 

forward, food retailers will (have to) increasingly rely on a combination of staff and 

automated technologies to ensure cost-effective, frictionless shopping. 

 

• Process automation: an ever greater proportion of production is being automated or 

performed by robotic methods. 

 

• Bots: progress in the field of language (especially in natural language processing, 

outlined above) is expected to lead to major advances in the take-up of bots, such as in 

customer service, marketing, help desk services, healthcare/diagnosis, consultancy and 

many other areas. 

The rapid pace of development means it is almost impossible to predict either the challenges we 

will face in the future or the solutions destined to simplify our lives. One thing we can say is that 

there is enormous potential here. The universities in the TriRhenaTech Alliance are actively 

contributing interdisciplinary solutions to the development of AI and its associated technical, 

societal and psychological research questions. 

 

 

 

Prof. Dr. Crispino Bergamaschi, 

Chair of the TriRhenaTech Alliance, 

President of FHNW University of Applied 

Sciences and Arts Northwestern Switzerland 
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Learning to Walk With Toes

Jens Fischer and Klaus Dorer

Offenburg University of Applied Sciences
{jens.fischer, klaus.dorer}@hs-offenburg.de

Abstract. This paper explains how a model-free (with respect to the robot model
and the behavior to learn) approach can facilitate learning to walk from scratch.
It is applied to a simulated Nao robot with toes. Results show an improvement
of 30% in speed compared to a model without toes and also compared to our
model-based approach, but with less stability.

Keywords: machine learning, genetic algorithms, humanoid robot walking

1 Introduction

Utilizing toes of a humanoid robot is difficult for various reasons, one of which is that
inverse kinematics is overdetermined with the introduction of toe joints. Nevertheless, a
number of robots with either passive toe joints like the Monroe or HRP-2 robots [1,2] or
active toe joints like Lola, the Toyota robot or Toni [3,4,5] have been developed. Recent
work shows considerable progress on learning model-free behaviors using genetic learning
[6] for kicking with toes and deep reinforcement learning [7,8,9] for walking without toe
joints. In this work, we show that toe joints can significantly improve the walking behavior
of a simulated Nao robot and can be learned model-free.

The remainder of this paper is organized as follows: Section 2 gives an overview of
the domain in which learning took place. Section 3 explains the approach for model
free learning with toes. Section 4 contains empirical results for various behaviors trained
before we conclude in Section 5.
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2 Domain

The robots used in this work are robots of the RoboCup 3D soccer simulation which is
based on SimSpark1 and initially initiated by [10]. It uses the ODE physics engine2 and
runs at an update speed of 50Hz. The simulator provides variations of Aldebaran Nao
robots with 22 DoF for the robot types without toes and 24 DoF for the type with toes,
NaoToe henceforth. More specifically, the robot has 6 (7) DoF in each leg, 4 in each arm
and 2 in its neck. There are several simplifications in the simulation compared to the real
Nao:

– all motors of the simulated Nao are of equal strength whereas the real Nao has weaker
motors in the arms and different gears in the leg pitch motors.

– joints do not experience extensive backlash
– rotation axes of the hip yaw part of the hip are identical in both robots, but the

simulated robot can move hip yaw for each leg independently, whereas for the real
Nao, left and right hip yaw are coupled

– the simulated Naos do not have hands
– the touch model of the ground is softer and therefore more forgiving to stronger

ground touches in the simulation
– energy consumption and heat is not simulated
– masses are assumed to be point masses in the center of each body part

Fig. 1: Joint model (left), wire model (center) and rendered model (right) of the NaoToe
robot.

The feet of NaoToe are modeled as rectangular body parts of size 8cm x 12cm x 2cm
for the foot and 8cm x 4cm x 1cm for the toes (see Figure 1). The two body parts are
connected with a hinge joint that can move from -1 degrees (downward) to 70 degrees.

1 http://simspark.sourceforge.net/
2 http://www.ode.org/
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All joints can move at an angular speed of at most 7.02 degrees per 20ms. The
simulation server expects to get the desired speed at 50 Hz for each joint. If no speeds
are sent to the server it will continue movement of the joint with the last speed received.
Joint angles are noiselessly perceived at 50Hz, but with a delay of 40ms compared to
sent actions. So only after two cycles, the robot knows the result of a triggered action. A
controller provided for each joint inside the server tries to achieve the requested speed,
but is subject to maximum torque, maximum angular speed and maximum joint angles.

The simulator is able to run 22 simulated Naos in real-time on reasonable CPUs. It
is used as competition platform for the RoboCup 3D soccer simulation league3. In this
context, only a single agent was running in the simulator.

3 Approach

The following subsections describe how we approached the learning problem. This in-
cludes a description of the design of the behavior parameters used, what the fitness
functions for the genetic algorithm look like, which hyperparameters were used and how
the fitness calculation in the SimSpark simulation environment works exactly.

3.1 Behavior Parameters

The guiding goal behind our approach is to learn a model-free walk behavior. With
model-free we depict an approach that does not make any assumptions about a robot’s
architecture nor the task to be performed. Thus, from the viewpoint of learning, our
model consists of a set of flat parameters. These parameters are later grounded inside
the domain.

The server requires 50 values per second for each joint. To reduce the search space, we
make use of the fact that output values of a joint over time are not independent. Therefore,
we learn keyframes, i.e. all joint angles for discrete phases of movement together with
the duration of the phase from keyframe to keyframe. The experiments described in
this paper used four to eight of such phases. The number of phases is variable between
learning runs, but not subject to learning for now, except for skipping phases by learning
a zero duration for it.

The RoboCup server requires robots to send the actual angular speed of each joint as
a command. When only leg joints are included, this would require to learn 15 parameters
per phase (14 joints + 1 for the duration of the phase), resulting in 60, 90 and 120
parameters for the 4, 6, 8 phases worked with. The disadvantage of this approach is
that the speed during a particular phase is constant, thus making it unable to adapt to
discrepancies between the desired and the actual motor movement.

Therefore, a combination of angular value and the maximum amount of angular speed
each joint should have is used. The direction and final value of movement is entirely
encoded in the angular values, but the speed can be controlled separately. It follows
that:

– If the amount of angular speed does not allow reaching the angular value, the joint
behaves like in version 1.

– If the amount of angular speed is bigger, the joint stops to move even if the phase is
not over.

3 http://www.robocup.org/robocup-soccer/simulation/
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This almost doubles the amount of parameters to learn, but the co-domain of values
for the speed values is half the size, since here we only require an absolute amount of
angular speed. With these parameters, the robot learns a single step and mirrors the
movement to get a double step.

3.2 Fitness Function

Feedback from the domain is provided by a fitness function that defines the utility of a
robot. The fitness function subtracts a penalty for falling from the walked distance in
X-direction in meters. There is also a penalty for the maximum deviation in Y-direction
reached during an episode, weighted by a constant factor. In practice, the values chosen
for fallenPenalty and a factor f were usually 3 and 2 respectively.

fitnesswalk = distanceX − fallenPenalty − (f ∗maxY ) (1)

This same fitness function can be used without modification for forward, backward
and sideward walk learning, simply by adjusting the initial orientation of the agent. The
also trained turn behavior requires a different fitness function.

fitnessturn = (g ∗ totalTurn) − distance (2)

Where totalTurn refers to the cumulative rotation performed in degrees, weighted by
a constant factor g (typically 1/100). We penalize any deviation from the initial starting
X / Y position (distance) as incentive to turn in-place. It is noteworthy that other than
swapping out the fitness function and a few more minor adjustments mentioned in 3.3,
everything else about the learning setup remained the same thanks to the model-free
approach.

3.3 Fitness Calculation

Naturally, the fitness calculation for an individual requires connecting an agent to the
SimSpark simulation server and having it execute the behavior defined by the learned
parameters. In detail, this works as follows:

At the start of each “episode”, the agent starts walking with the old model-based walk
engine at full speed. Once 80 simulation cycles (roughly 1.5 seconds) have elapsed, the
robot starts checking the foot force sensors. As soon as the left foot touches the ground,
it switches to the learned behavior. This ensures that the learned walk has comparable
starting conditions each time. If this does not occur within 70 cycles (which sometimes
happens due to non-determinism in the domain and noise in the foot force perception),
the robot switches anyway.

From that point on, the robot keeps performing the learned behavior that represents
a single step, alternating between the original learned parameters and a mirrored version
(right step and left step). An episode ends once the agents has fallen or 8 seconds have
elapsed.

To train different walk directions (forward, backward, sideward), the initial orienta-
tion of the player is simply changed accordingly. In addition, the robot uses a different
walk direction of the model-based walk engine for the initial steps that are not subject
to learning.

In case of training a morphing behavior (see 4.5), the episode duration is extended to
12 seconds. When a morphing behavior should be trained, the step behavior from another
learning run is used. This also means that a morphing behavior is always trained for a
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specific set of walk parameters. After 6 seconds, the morphing behavior is triggered once
the foot force sensors detect that the left foot has just touched the ground. Unlike the
step / walk behavior, this behavior is just executed once and not mirrored or repeated.
Then the robot switches back to walking at full speed with the model-based walk engine.
To maximize the reward, the agent has to learn a morphing behavior that enables the
transition between learned model-free and old model-based walk to work as reliably as
possible.

Finally, for the turn behavior, the robot keeps repeating the learned behavior without
alternating with a mirrored version. In any case, if the robot falls, a training run is over.

Experiments were run over 200 generations with 10 oversampling runs per robot to
average out non-determinism. Combined with the population size of 200, this means that
400000 fitness calculations are done per learning run:

200 (Population Size) ∗ 200 (Generations) ∗ 10 (Oversampling) = 400000 (3)

The overall runtime of each such learning run is 2.5 days on our hardware.

3.4 Hyperparameters

Learning is done using plain genetic algorithms. The following hyperparameters were
used:

– Population Size: 200 Individuals
– Genders: 2
– Parents per Individual: 2
– Selection Strategy: MonteCarloSelection
– Reproduction Strategy: MultiCrossoverRecombination
– Mutation Strategy: RandomMutation
– Mutation Probability per Individual: 10%
– Mutation Probability per Gene: 20%

More details on the approach can be found in [11].

4 Results

This section presents the results for each kind of behavior trained. This includes three
different walk directions, a turn behavior and a behavior for morphing.

4.1 Forward Walk

The main focus of this work has been on training a forward walk movement. Figure 2
shows a sequence of images for a learned step. The best result reaches a speed of 1.3
m/s compared to the 1.0 m/s of our model-based walk and 0.96 m/s for a walk behavior
learned on the Nao robot without toes. The learned walk with toes is less stable, however,
and shows a fall rate of 30% compared to 2% of the model-based walk.

Regarding the characteristics of this walk, it utilizes remarkably long steps4. Table 1
shows an in-depth comparison of various properties, including step duration, length and
height, which are all considerably bigger compared to our previous model-based walk.
The forward leaning of the agent has increased by 80.4%, while 28.1% more time is spent
with both legs off the ground. However, the maximum deviation from the intended path
(maxY ) has also increased by 137.8%.

4 https://youtu.be/ytM61yTcJ-Q
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Fig. 2: Movement sequence of a learned walk behavior with toes.

Value Old New Diff Diff %

utility 5.102 5.118 +0.016 +0.3%

distanceX 6.095 7.482 +1.387 +22.8%

speedX 0.993 1.291 +0.298 +30%

maxY 0.497 1.182 +0.685 +137.8%

bothLegsOffGround 0.495 0.634 +0.139 +28.1%

oneLegOffGround 0.507 0.366 -0.141 -27.8%

noLegsOffGround 0 0.003 +0.003

stepDuration 0.08 0.301 +0.221 +276.3%

stepLength 0.13 0.429 +0.299 +230%

stepHeight 0.02 0.123 +0.103 +515%

leaningX 0 0.001 +0.001

leaningY -0.107 -0.193 -0.086 -80.4%

Table 1: Comparison of the previously fastest and the fastest learned forward walk

4.2 Backward Walk

Once a working forward walk was achieved, it was natural to try to train a backward walk
behavior as well, since this only requires a minor modification in the learning environment
(changing the initial rotation of the agent and model-based walk direction to start with).
The best backward walk learned reaches a speed of 1.03 m/s, which is significantly faster
than the 0.67 m/s of its model-based counterpart. Unfortunately, the agent also falls 15%
more frequently.

It is interesting just how backward-leaning the agent is during this walk behavior. It
could almost be described as “controlled falling”5 (see Figure 3).

4.3 Sideward Walk

Sideward walk learning was the least successful out of the three walk directions. Like with
all directions, the agent starts out using the old walk engine and then switches to the
learned behavior after a short time. In this case however, instead of continuing to walk
sideward, the agent has learned to turn around and walk forward instead, see Figure 4.

The resulting forward walk is not very fast and usually causes the agent to fall within
a few meters6, but it is still remarkable that the learned behavior manages to both turn
the agent around and make it walk forward with the same repeating step movement. It
is also remarkable that the robot learned that it is quicker with the given legs at least
for long distances to turn and run forward than to keep making sidesteps.

5 https://youtu.be/4mq06V_Sk9Y
6 https://youtu.be/4WnPzM1pPfU
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(a) Learning curve (b) Heavy backward lean

Fig. 3: Learning curve and backward lean of the backward walk

Fig. 4: Change of the walk direction during sideward walk learning

4.4 Turn

With the alternate fitness function presented in section 3, the agent managed to learn a
turn behavior that is comparable in speed to that of the existing walk engine. Despite
this, the approach is actually different: while the old walk engine uses small, angled
steps7, the learned behavior uses the left leg as a “pivot”, creating angular momentum
with the right leg8. Figure 5 shows the movement sequence in detail.

Fig. 5: Movement sequence of a learned turn behavior.

Unfortunately, despite the comparable speed, the learned turn behavior suffers from
much worse stability. With the old turn behavior, the agent only falls in roughly 3% of
cases, with the learned behavior it falls in roughly 55% of the attempts.

7 https://youtu.be/PryjLMXIta0
8 https://youtu.be/xgyZtCS68Wo
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4.5 Morphing

One of the major hurdles for using the learned walk behaviors in a RoboCup competition
is the smooth transition between them and other existing behaviors such as kicks. The
initial transition to the learned walk is already built into the learning setup described
in 3 by switching mid-walk, so it does not have to be given special consideration. More
problematic is switching to another behavior afterwards without falling.

Fig. 6: Lunge performed by the trained morphing behavior.

To handle this, the robot simply attempted to train a “morphing” behavior using
the same model-free learning setup. The result is something that could be described as
a “lunge” (see Figure 6) that reduces the forward momentum sufficiently to allow it to
transition to the slower model-based walk when successful.9 However, the morphing is
not successful in about 50% of cases, resulting in a fall.

5 Conclusion and Future Work

We were able to successfully train forward and backward walk behaviors, as well as a
morphing and turn behavior using plain genetic algorithms and a very flexible model-free
approach. The usage of the toe joint in particular makes the walks look more natural
and human-like than that of the model-based walk engine.

However, while the learned behaviors outperform or at least match our old model-
based walk engine in terms of speed, they are not stable enough to be used during actual
RoboCup 3D Simulation League competitions. We think this is an inherent limitation
of the approach: We train a static behavior that is unable to adapt to changing circum-
stances in the environment, which is common in SimSpark’s non-deterministic simulation
with perception noise.

Deep Reinforcement Learning seems more promising in this regard, as the neural
network can dynamically react to the environment since sensor data serves as input. It is
also arguably even less restrictive than the keyframe-based behavior parameterization we
presented in this paper, as a neural network can output raw joint actions each simulation
cycle. At least two other RoboCup 3D Simulation League teams, FC Portugal [8] and
ITAndroids [9], have had great success with this approach, Everything points towards
this becoming the state-of-the-art approach in RoboCup 3D Soccer Simulation in the
near future, so we want to concentrate our future efforts here as well.

9 https://youtu.be/NB_4i2_b-Pg
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Abstract.  

In this paper we present a machine learning pipeline developed specifically for the product 
group of alcoholic beverages with focus on the two segments wine and beer which 
constitute the major part of a retailer’s alcoholic beverages inventory. We focus on 
exploiting expert knowledge about the data domain to engineer features tailored to 
prediction of the important attribute gross weight. Experiments with data from a major retail 
company show that our proposed machine learning approach with feature enriched data 
achieves superior results which are more robust than those obtained by traditional heuristic 
approaches on the original data. In practical terms this is a step towards fully automated 
product data generation and maintenance reducing manual effort and thus costs for a retail 
company.  

 Keywords: Product Classification, Feature Engineering, Machine Learning 

1 Introduction 

Retail companies dealing in alcoholic beverages are faced with a constant flux of products. Apart 
from general product changes like modified bottle designs and sizes or new packaging units two 
factors are responsible for this development. The first is the natural wine cycle with new vintages 
arriving at the market and old ones cycling out each year. The second is the impact of the rapidly 
growing craft beer trend which has also motivated established breweries to add to their range. 
The management of the corresponding product data is a challenge for most retail companies. The 
reason lies in the large amount of data and its complexity. Data entry and maintenance processes 
are linked with considerable manual effort resulting in high data management costs. Product data 
attributes like dimensions, weights and supplier information are often entered manually into the 
data base and are often afflicted with errors. Another widely used source of product data is the 
import from commercial data pools. A means of checking the data thus acquired for plausibility 
is necessary. Sometimes product data is incomplete due to different reasons and a method to fill 
the missing values is required. All these possible product data errors lead to complications in the 
downstream automated purchase and logistics processes.  

We propose a machine learning model which involves domain specific knowledge and compare 
it a heuristic approach by applying both to real world data of a retail company. In this paper we 
address the problem of predicting the gross weight of product items in the merchandise category 
alcoholic beverages. To this end we introduce two levels of additional features. The first level 
consists of engineered features which can be determined by the basic features alone or by domain 
specific expert knowledge like which type of bottle is usually used for which grape variety. In 
the next step an advanced second level feature is computed from these first level features. Adding 
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these two levels of engineered features increases the prediction quality of the suggestion values 
we are looking for. The results emphasize the importance of careful feature engineering using 
expert knowledge about the data domain. 

2 Related Work 

Feature Engineering is the process of extracting features from the data in order to train a 
prediction model. It is a crucial step in the machine learning pipeline, because the quality of the 
prediction is based on the choice of features used to training. The majority of time and effort in 
building a machine learning pipeline is spent on data cleaning and feature engineering 
[Domingos 2012]. A first overview of basic feature engineering principles can be found in 
[Zheng 2018]. The main problem is the dependency of the feature choice on the data set and 
the prediction algorithm. What works best for one combination does not necessarily work for 
another. A systematic approach to feature engineering without expert knowledge about the data 
is given in [Heaton 2016]. The authors present a study whether different machine learning 
algorithms are able to synthesize engineered features on their own. As engineered features 
logarithms, ratios, powers and other simple mathematical functions of the original features are 
used. In [Anderson 2017] a framework for automated feature engineering is described. 

3 Data Set 

The data set is provided by a major German retail company and consists of 3659 beers and 10212 
wines. Each product is characterized by the seven features shown in table 1. The product name 
obeys only a generalized format. Depending on the user generating the product entry in the 
company data base, abbreviating style and other editing may vary. The product group is a 
company specific number which encodes the product category - dairy products, vegetables or 
soft drinks for example. In our case it allows a differentiation of the product into beer and wine. 
Additionally wines are grouped by country of origin and for Germany also into wine-growing 
regions. Note that the product group is no inherent feature like length, width, height and volume, 
but depends on the product classification system a company uses. The dimensions length, width, 
height and the volume derived by multiplicating them are given as float values. The feature 
(gross) weight, also given as a float value, is what we want to predict. 

3.1 Feature description 

Feature Type Unit Example 
Product name string - MW  PFUNGSTAED  EDEL  PILS  EXCLUSIV 
Product group int - 47114 
Length float mm 69.0 
Width float mm 69.0 
Height float mm 270.0 
Volume float ml 1285470.0 
Gross Weight float g 915.0 

 
Table. 1. Data set features, corresponding types, units and example 
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3.2 General Pre-Processing 

As is often the case with real world data, a pre-processing step has to be performed prior to the 
actual machine learning in order to reduce data errors and inconsistencies. For our data we first 
removed all articles missing one or more of the required attributes of table 1. Then all articles 
with dummy values were identified and discarded. Dummy values are often introduced due to 
internal process requirements but do not add any relevant information to the data. If for example 
the attribute weight has to be filled for an article during article generation in order to proceed to 
the next step but the actual value is not know, often a dummy value of 1 or 999 is entered. These 
values distort the prediction model when used as training data in the machine learning step. The 
product name is subjected to lower casing and substitution of special German characters like 
umlauts. Special symbolic characters like #,! or separators are also deleted. With this pre-
processing done the data is ready to be used for feature engineering. 

Following this formal data cleaning we perform an additional content-focused pre-processing. 
The feature weight is discretized by binning it with bin width 10g. Volume is likewise treated 
with bin size 10ml. This simplifies the value distribution without rendering it too coarse. All 
articles where length is not equal to width are removed, because in these cases there are no single 
items but packages of items. 

4 Feature Engineering 

Often the data at hand is not sufficient to train a meaningful prediction model. In these cases 
feature engineering is a promising option. Identifying and engineering new features depends 
heavily on expert knowledge of the application domain. The first level consists of engineered 
features which can be determined by the original features alone. In the next step advanced second 
level features are computed from these first level and the original features. 

For our data set the original features are product name and group as well as the dimensions 
length, width, height and volume. We see that the volume is computed in the most general way 
by multiplication of the dimensions. Geometrically this corresponds to all products being 
modelled as cuboids. Since angular beer or wine bottles are very much the exception in the real 
world, a sensible new feature would be a more appropriate modelling of the bottle shape. Since 
weight is closely correlated to volume, the better the volume estimate the better the weight 
estimate. To this end we propose four first level engineered features: capacity, wine bottle type, 
beer packaging type and beer bottle type which are in turn used to compute a second level 
engineered feature namely the packaging specific volume. Figure 1 shows all discussed features 
and their interdependencies. 

4.1 Capacity 

Let us have a closer look at the first level engineered features. The capacity of a beverage states 
the amount of liquid contained and is usually limited to a few discrete values. 0.33l and 0.5l are 
typical values for beer cans and bottles while wines are almost exclusively sold in 0.75l bottles 
and sometimes in 0.375l bottles. The capacity can be estimated from the given volume with 
sufficient certainty using appropriate threshold values. Outliers were removed from the data set. 
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Figure. 1. First and second level engineered features 

4.2 Beer packaging and bottle types 

There are three main beer packaging types in retail: cans, bottles and kegs. While kegs are mainly 
of interest to pubs and restaurants and are not considered in this paper, cans and bottles target 
the typical super market shopper and come in a greater variety. In our data set, the product name 
in case of beers is preceded by a prefix denoting whether the product is packaged in a can  or a 
bottle. Extracting the relevant information is done using regular expressions. Not, though, that 
the prefix is not always correct and needs to be checked against the dimensions. 

The shapes of cans are the same for all practical purposes, no matter the capacity. The only 
difference is in their wall thickness, which depends on the material, aluminium and tin foil  being 
the two common ones. The difference is weight is small and the actual material used is 
impossible to extract from the data. A further distinction for cans in different types like for beer 
and wine is therefore unnecessary. 

Regarding the German beer market, the five bottle types shown in figure 2 are pre-dominant: 
longneck, NRW, Euro, Steini and NRW-Vichy. While not conforming to a DIN (the DIN 6199 
Packmittel – Flaschen, Steinieform was withdrawn in 1997) standard anymore, the variations in 
length, width and height and weight are small. Therefore, bottles of the same type and brand may 
have different weights, even if they are sold in the same crate. Measurements for a crate of 18 
filled Steini bottles resulted in 20 different weight values. A tolerance of +/- 2% was observed. 
As a pre-processing step, the weights were therefore rounded to the nearest 10g. 

This holds true for all of the five bottle types in question. Since for beers there are no comparably 
meaningful reference points like color, grape or region of origin, the bottle type is determined 
by height and diameter using the minimum of the Euclidean distance to a set of idealized bottles 
with dimensions given in table 2. Bottles which were differing by more than 3% from these 
dimensions were removed from the data set. 
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Bottle type Capacity Height Diameter 
NRW 500 ml 260.0 67.0 
Euro 500 ml 230.0 70.6 
Longneck 500 ml 270.0 68.3 
Longneck 330 ml 238.0 60.0 
NRW-Vichy 330 ml 233.0 61.0 
Steini 330 ml 174.0 70.0 

 
Table. 2. Beer bottle types and corresponding typical dimensions 

The engineered feature beer packaging type assigns each article identified as beer by its product 
group to one of the classes bottle or can. The feature beer bottle type contains the most probably 
member of the five main beer bottle types.  Packages containing more than one bottle or can like 
crates or six packs are not considered in this paper and were removed from the data set. 

 

Figure 2. Beer bottle types, from left to right: Longneck, NRW, Euro, Steini, NRW-Vichy 

4.3 Wine packaging types 

Compared to beer the variety of commercially sold wine packagings is limited to bottles only. A 
corresponding packaging type attribute to distinguish between cans and bottles is not necessary. 
Again there are a few bottle types which are used for the majority of wines, namely Schlegel, 
Bordeaux and Burgunder (Figure 3). Deciding what product is filled in which bottle type is a 
question of domain knowledge. The original data set does not contain a corresponding feature. 
From the product group the country of origin and in the case of German wines the region can be 
determined via a mapping table. This depends on the type of product classification system the 
respective company uses and has not to be valid for all companies. Our data set uses a customer 
specific classification with focus on Germany. A more general one would be the Global Product 
Classification (GPC) standard for example. To determine wine growing regions in non-German 
countries like France the product name has to be analyzed using regular expressions. The type 
of grape is likewise to be deduced from the product name if possible. Using the country and 
specifically the region of origin and type of grape of the wine in question is the only way to 
assign a bottle type with acceptable certainty. There are countries and region in which a certain 
bottle type is used predominantly, sometimes also depending on the color of the wine. The 
Schlegel bottle, for example, is almost exclusively used for German and Alsatian white wines 
and almost nowhere else. Bordeaux and Burgunder bottles on the other hand are used throughout 
the world. Some countries like California or Chile use a mix of bottle types for their wines, which 
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poses an additional challenge. With expert knowledge one can assign regions and grape types to 
the different bottle types. As with beer bottles this categorization is by no means comprehensive 
or free of exceptions but serves as a first step.  
 

 
 

Figure 2. Wine bottle types, from left to right: Schlegel, Bordeaux, Burgunder 
 

4.4 Packaging type specific volume computation 

The standard volume computation by multiplying the product dimensions length, width and 
height is a rather coarse cuboid approximation to the real shape of alcoholic beverage 
packagings. Since the volume is intrinsically linked to the weight which we want to predict a 
packaging type specific volume computation is required for cans and especially bottles. 

The modelling of a can is straightforward using a cylinder with the given height ℎ and a diameter 
of the given width 𝑤𝑤 and length 𝑙𝑙. Thus the packaging type specific volume is: 

          𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 2𝜋𝜋 ∙ 𝑙𝑙 ∙ 𝑤𝑤 ∙ ℎ      (1) 

A bottle on the other hand needs to be modelled piecewise. Its height can be divided into three 
parts: base, shoulders and neck as shown in figure 4. Base and neck can be modeled by a cylinder. 
The shoulders are approximated by a truncated cone. With the help of the corresponding partial 
heights ℎ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , ℎ𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and ℎ𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 we can compute coefficients 𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑘𝑘𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  as 
fractions of the overall height ℎ of the bottle. The diameters of the bottle base and the neck 
opening are given by  𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  and 𝑑𝑑𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and are likewise used to compute the ratio 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜. 
Since bottles have circular bases, the values for width 𝑤𝑤 and length 𝑙𝑙 in the original data have to 
be the same and either one may be used for 𝑑𝑑𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵. These four coefficients are characteristic for 
each bottle type, be it beer or wine (table 3). With their help, a bottle type specific volume from 
the original data length, width and height can be computed which is a much better approximation 
to the true volume than the former cuboid model. 
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Figure 4. General parametric bottle description 
 

Coefficient Burgunder Bordeaux Schlegel NRW Longneck Steini Euro 
𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  0.48 0.60 0.34 0.59 0.52 0.52 0.62 

𝑘𝑘𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  0.32 0.13 0.44 0.28 0.13 0.29 0.34 

𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  0.20 0.27 0.22 0.13 0.35 0.19 0.24 

𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  0.40 0.40 0.40 0.37 0.37 0.43 0.35 

 
Table 3. Empirically measured coefficients for different bottle types 

 

The bottle base can be modelled as a cylinder as follows: 

𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶 = 2𝜋𝜋 ∙ 𝑙𝑙 ∙ 𝑤𝑤 ∙ ℎ ∙ 𝑘𝑘𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵      (2) 

 

The bottle shoulders have the form of a truncated cone and are described by formula 3:  

   
𝑉𝑉𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 = 1

12
𝜋𝜋 ∙ ℎ ∙ 𝑘𝑘𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝑙𝑙 ∙ �𝑙𝑙 + 𝑙𝑙 ∙ 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑙𝑙 ∙ 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 2
�  (3) 

The bottle neck again is a simple cylinder: 

 
𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶 = 2𝜋𝜋 ∙ 𝑙𝑙 ∙ 𝑤𝑤 ∙ 𝑘𝑘𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ∙ ℎ ∙ 𝑘𝑘𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵    (4) 

Summing up all three sections yields the packaging type specific volume for bottles: 

𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶 = 𝑉𝑉𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶 + 𝑉𝑉𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶 +𝑉𝑉𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶     (5) 
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5 Experiments 

The experiments follow the multi-level feature engineering scheme as shown in figure 1. First, 
we use only the original features product group and dimensions. Then we add the first level 
engineered features capacity and bottle type to the basic features. Next the second level 
engineered feature packaging type specific volume is used along with the basic features. Finally 
all features from every level are used for the prediction. After pre-processing and feature 
engineering the data set size is reduced from 3659 to 3380 beers and from 10212 to 8946 wines. 

5.1 Algorithms and metrics 

For prediction of the continuous valued attribute gross weight, we use and compare several 
regression algorithms. Both the decision-tree based Random Forests algorithm (Breimann, 2001) 
and support vector machines (SVM) (Cortes, 1995) are available in regression mode (Smola, 
1997). Linear regression (Lai, 1979) and stochastic gradient descent (SGD) (Taddy, 2019) are 
also employed as examples of more traditional statics-based methods. Our baseline is a heuristic 
approach taking the median of the attribute gross weight for each product group and use this 
value as a prediction for all products of the same product group. Practical experience has shown 
this to be a surprisingly good strategy.  

The implementation was done in Python 3.6 using the standard libraries sk-learn and pandas. All 
numeric features were logarithmized prior to training the models. The non-numeric feature bottle 
type was converted to numbers. The final results were obtained using tenfold cross validation 
(Kohavi, 1995). For model training 80% of the data was used while the remaining 20% 
constituted the test data. 

We used the root mean square error (RSME) (6) as well as the mean and variance of the absolute 
percentage error 𝑒𝑒𝑎𝑎𝑝𝑝   (7) as metrics for the evaluation of the performance of the algorithms. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝑣𝑣𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑣𝑣𝑛𝑛𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟�

2
𝑁𝑁
𝑛𝑛=1

𝑁𝑁
    (6) 

𝑒𝑒𝑎𝑎𝑎𝑎 = 1
𝑁𝑁
∑

�𝑣𝑣𝑛𝑛
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑣𝑣𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

𝑁𝑁
𝑛𝑛=1     (7) 
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5.2 Results 

Features Algorithm RSME Mean 𝑒𝑒𝑎𝑎𝑎𝑎  Var 𝑒𝑒𝑎𝑎𝑎𝑎  
Product group Baseline 216.40 14.28 319.00 
Dimensions, product group Linear Regression 135.12 8.89 114.78 
Dimensions + capacity Linear Regression 142.97 9.19 137.32 
Dimensions + bottle_type Linear Regression 152.39 9.02 127.72 
Dimensions + bottle_type + capacity Linear Regression 136.45 8.19 115.92 
Dimensions + packaging_type_specific_volume Linear Regression 181.30 8.33 114.12 
Dimensions + all engineered features Linear Regression 133.91 8.08 122.09 
Dimensions, product group SGD 142.81 10.10 124.41 
Dimensions + capacity SGD 124.68 8.09 129.19 
Dimensions + bottle_type SGD 143.38 10.39 105.47 
Dimensions + bottle_type + capacity SGD 176.30 8.96 142.60 
Dimensions + packaging_type_specific_volume SGD 135.59 10.34 142.80 
Dimensions + all engineered features SGD 154.62 9.37 138.82 
Dimensions, product group Random Forest 91.73 6.72 121.45 
Dimensions + capacity Random Forest 98.75 4.98 106.12 
Dimensions + bottle_type Random Forest 91.75 4.59 80.94 
Dimensions + bottle_type + capacity Random Forest 83.25 3.76 71.17 
Dimensions + packaging_type_specific_volume Random Forest 111.72 5.68 113.28 
Dimensions + all engineered features Random Forest 99.93 3.62 81.77 
Dimensions, product group SVM 114.48 5.36 95.73 
Dimensions + capacity SVM 118.00 5.08 160.38 
Dimensions + bottle_type SVM 140.16 5.13 88.88 
Dimensions + bottle_type + capacity SVM 143.62 5.63 94.00 
Dimensions + packaging_type_specific_volume SVM 118.87 3.88 94.16 
Dimensions + all engineered features SVM 125.67 3.99 80.47 

 
Table. 4. Weight prediction result metrics for beer with different feature combinations 

All machine learning algorithms deliver significant improvements regarding the observed 
metrics compared to the heuristic median approach. The best results for each feature combination 
are highlighted in bold script. The results for the beer data set in table 4 show that the RSME can 
be more than halved, the mean 𝑒𝑒𝑎𝑎𝑎𝑎  almost be reduced to a third and the variance of 𝑒𝑒𝑎𝑎𝑎𝑎  quartered 
compared to the baseline approach. The Random Forest regressor achieves the best results in 
terms of RSME and 𝑒𝑒𝑎𝑎𝑎𝑎  for almost all feature combinations except basic features and basic 
features combined with the packaging type specific volume, in which cases Support Vector 
Machines prove superior. Linear regression and SGD are are still better than the baseline 
approach but not on par with the other algorithms. Linear regression shows the tendency to 
improved results when successively adding features. SGD on the other hand exhibits no clear 
relation between number and level of features and corresponding prediction quality. A possible 
cause could be the choice of hyper parameters. SGD is very sensitive in this regard and depends 
more heavily upon a higher number of correctly adjusted hyper parameters than the other 
algorithms we used. Random Forests is a method which is very well suited to problems, where 
there is no easily discernable relation between the features. It is prone to overfitting, though, 
which we tried to avoid by using 20% of all data as test data. Adding more engineered features 
leads to increasingly better results using Random Forest with an outlier for the packaging type 
specific volume feature. SVM are not affected by only first level engineered features but profit 
from using the bottle type specific volume. 
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Features Algorithm RSME Mean 𝑒𝑒𝑎𝑎𝑎𝑎  Var 𝑒𝑒𝑎𝑎𝑎𝑎  
Product group Baseline 38931.0 13.10 1125.00 
Dimensions, product group Linear Regression 30653.4 7.55 144.10 
Dimensions + capacity Linear Regression 36168.2 7.41 121.60 
Dimensions + bottle_type Linear Regression 37132.2 7.56 143.80 
Dimensions + bottle_type + capacity Linear Regression 40533.5 7.40 120.50 
Dimensions + packaging_type_specific_volume Linear Regression 42894.9 7.48 125.47 
Dimensions + all engineered features Linear Regression 34322.8 7.54 134.60 
Dimensions, product group SGD 34079.4 8.12 131.04 
Dimensions + capacity SGD 32039.8 7.83 95.69 
Dimensions + bottle_type SGD 32448.1 10.31 137.76 
Dimensions + bottle_type + capacity SGD 43545.4 11.69 178.17 
Dimensions + packaging_type_specific_volume SGD 37905.3 8.43 144.81 
Dimensions + all engineered features SGD 31762.2 11.57 146.07 
Dimensions, product group Random Forest 30999.9 6.98 121.08 
Dimensions + capacity Random Forest 38385.0 6.84 124.00 
Dimensions + bottle_type Random Forest 34032.1 6.65 118.17 
Dimensions + bottle_type + capacity Random Forest 39852.3 6.45 107.87 
Dimensions + packaging_type_specific_volume Random Forest 35509.5 7.18 143.60 
Dimensions + all engineered features Random Forest 34986.3 6.67 118.83 
Dimensions, product group SVM 39030.4 7.07 102.15 
Dimensions + capacity SVM 38132.8 7.18 118.53 
Dimensions + bottle_type SVM 38843.5 7.18 128.90 
Dimensions + bottle_type + capacity SVM 30109.9 7.23 140.37 
Dimensions + packaging_type_specific_volume SVM 35044.4 7.47 159.21 
Dimensions + all engineered features SVM 38993.4 7.35 135.40 

 
Table. 5. Weight prediction result metrics for wine with different feature combinations 

Regarding the wine data set the results depicted in table 5 are not as good as for the beer data set 
though still much better than the baseline approach. A reduction of the RSME by over 29% and 
of the mean 𝑒𝑒𝑎𝑎𝑎𝑎  by almost 50%  compared to the baseline were achieved.  The variance of 𝑒𝑒𝑎𝑎𝑎𝑎  
could even be limited to under 10% of the baseline value. Again Random Forests is the algorithm 
with the best 𝑒𝑒𝑎𝑎𝑎𝑎  metrics. Linear regression and SVM are comparable in terms of 𝑒𝑒𝑎𝑎𝑎𝑎  while SGD 
is worse but shows good RSME values. In conclusion the general results of the wine data set 
show not much improvement when applying additional engineered features.  

6 Discussion and Conclusion 

The experiments show a much better predicting quality for beer than for wine. A possible cause 
could be the higher weight variance in bottle types compared to beer bottles and cans. It is also 
more difficult to correctly determine the bottle type for wine, since the higher overlap in 
dimensions does not allow to compute the bottle type with the help of idealized bottle 
dimensions. Using expert knowledge to assign the bottle type by region and grape variety seems 
not to be as reliable, though. Especially with regard to the lack of a predominant bottle type in 
the region with the most bottles (red wine from Baden for example), this approach should be 
improved. Especially Bordeaux bottles often sport an indentation in the bottom, called a ‘culot 
de bouteille’. The size and thickness of this indentation cannot be inferred from the bottle’s 
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dimensions. This means that the relation between bottle volume and weight is skewed compared 
to other bottles without these indentations, which in turn decreases prediction quality. 

Predicting gross weights with machine learning and domain-specifically engineered features 
leads to smaller discrepancies than using simple heuristic approaches. This is important for retail 
companies since big deviations are much worse for logistical reasons than small ones which may 
well be within natural production tolerances for bottle weights. Our method allows to check 
manually generated as well as data pool imported product data for implausible gross weight 
entries and proposes suggestion values in case of missing entries. 

The method we presented can easily be adapted to non-alcoholic beverages using the same 
engineered features. In this segment, plastics bottles are much more common than glass ones and 
hence the impact of the bottle weight compared to the liquid weight is significantly smaller. We 
assume that this will cause a smaller importance of the bottle type feature in the prediction. A 
more problematic kind of beverage is liquor. Although there are only a few different standard 
capacities, the bottle types vary so greatly, that identifying a common type is almost impossible.  
One of the main challenges of our approach is determining the correct bottle types. Using expert 
knowledge is a solid approach but cannot capture all exemptions. Especially if a wine growing 
region has no predominant bottle type and is using mixed bottle types instead. Additionally many 
wine growers use bottle types which haven’t been typical for their wine types because they want 
to differ from other suppliers in order to get the customer’s attention. Assuming that all Rieslings 
are sold in Schlegel bottles, for example, is therefore not exactly true. One option could be to 
model hybrid bottles using a weighted average of the coefficients for each bottle type in use. If 
a region uses both Burgunder and Bordeaux bottles with about equal frequency, all products 
from this region could be assigned a hybrid bottle with coefficients computed by the mean value 
of each coefficient. If an initially bottle type labeled data set is available, preliminary simulations 
have shown that most bottle types can be predicted robustly using classification algorithms. The 
most promising strategy, in our opinion, is to learn the bottle types directly from product images 
using deep neural nets for example. With regard to the ever increasing online retail sector, web 
stores need to have pictures of their products on display, so the data is there to be used. 
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Abstract.  

Extensive research and development has been conducted in the field of AI-powered analysis 

of medical CT data during the past years – with significant progress. Although voxel data 

from industrial parts differ from medical data in the contrast level and the resolution, the 

medical DL approach is promising. Therefore, the aim of this work is exploring and 

developing neural network models for detecting defects in industrial CT data. Network 

architectures, successfully applied to medical CT data, were investigated and derivates were 

developed. Different neural network models were trained utilising a mixture of synthetic 

data and real data. The evaluation showed very good results for a modified U-Net neural 

network. 

Keywords: AI; CT; INDUSTRIAL, CNN, DEEP LEARNING 

1 Introduction 

Quality assurance is one of the key issues for modern production technologies. Especially new 

production methods like additive manufacturing and composite materials require high resolution 

3D quality assurance methods. Computed tomography (CT) is one of the most promising 

technologies to acquire material and geometry data non-destructively at the same time. 

 

With CT it is possible to digitalize subjects in 3D, also allowing to visualize their inner structure. 

A 3D-CT scanner produces voxel data, comprising of volumetric pixels that correlate with 

material properties. The voxel value (grey value) is approximately proportional to the material 

density. Nowadays it is still common to analyse the data by manually inspecting the voxel data 

set, searching for and manually annotating defects. The drawback is that for high-resolution CT 

data, this process it very time consuming and the result is operator-dependent. Therefore, there 

is a high motivation to establish automatic defect detection methods.  

 

There are established methods for automatic defect detection using algorithmic approaches. 

However, these methods show a low reliability in several practical applications. At this point 
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artificial neural networks come into play that have been already implemented successfully in 

medical applications [1]. The most common networks, developed for medical data segmentation, 

are by Ronneberger et al., the U-Net [2] and by Milletari et al., the V-Net [3] and their derivates. 

These networks are widely used for segmentation tasks. Fuchs et al. describes three different 

ways of analysing industrial CT Data [4]. One of these contains a 3D-CNN. This CNN is based 

on the U-Net architecture and is shown in their previous paper [5]. The authors enhance and 

combine the U-Net and V-Net architecture to build a new network for examination of 3D 

volumes. In contrast, we investigate in our work how the networks introduced by Ronneberger 

et al. and Milletari et al. perform in industrial environments. Furthermore, we investigate if 

derivates of these architectures are able to identify small features in industrial CT data. 

2 Industrial vs. medical CT data 

In industrial CT systems, not only in the hardware design but also in the resulting 3D imaging 

data differs from medical CT systems. Voxel data from industrial parts differ from medical data 

in the contrast level and the resolution. State-of-the-art industrial CT scanner produce one to two 

order of magnitude larger data sets compared to medical CT systems. The corresponding 

resolution is necessary to resolve small defects. Medical CT scanners are optimised for a low x-

ray dose for the patient, the energy of x-ray photons are typically up to 150 keV, industrial 

scanner typically use energies up to 450 KeV. In combination with the difference of the scan 

“object”, the datasets differ significantly in size and image content. 

 

To store volume data there are a lot of different file formats. Some of them are mainly used in 

medical applications like DICOM [6], NifTi1 or RAW. In industrial applications VGL3, RAW 

and TIFF4 are commonly used. Also depending on the format, it is possible to store the data slice 

wise or as a complete volume stack.  

3 CT data for training and evaluation 

Industrial CT data, as mentioned in previous section, has some differences to medical CT data. 

One aspect is the size of the features to be detected or learned by the neural network. Our target 

is to find defects in industrial parts. As an example, we analyse pores in casting parts. These 

features may be very small, down to 1 to 7 voxels in each dimension. Compared to the size of 

the complete data volume (typically larger than 512 x 512 x 512 voxel), the feature size is very 

small. The density difference between material and pores may be as low as 2% of the maximum 

grey value. Thus, it is difficult to annotate the data even for human experts. The availability of 

real industrial data of good quality, annotated by experts, is very low. Most companies don’t 

reveal their quality analysis data. Training a neural network with a small quantity of data is not 

possible. For medical applications, especially AI applications, there are several public datasets 

available. Yet these datasets are not always sufficient and researchers are creating synthetic 

medical data [7].  

 

1 Details available at: https://nifti.nimh.nih.gov/ - 20/03/12 
3 Details available at: https://www.volumegraphics.com/ - 20/03/12 
4 Details available at: https://kb.iu.edu/d/afjn - 20/03/12 
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Therefore, we decided to create synthetic industrial CT data. Another important reason for 

synthetic data is the quality of annotations done by human experts. The consistency of results is 

not given for different experts. Fuchs et al. have shown that training on synthetic data and 

predicting on real data lead to good results [4]. However, synthetic data may not reflect all 

properties of real data. Some of the properties are not obvious, which may lead to ignoring some 

varieties in the data. In order to achieve a high associability, we use a large numbers of synthetic 

data mixed with a small number of real data. To achieve this, we developed an algorithm which 

generates large amounts of data, containing a large variation of aspects, needed to generalize a 

neural network. The variation includes material density, pore density, pore size, pore amount, 

pore shape and size of the part.  

 

There are some samples that could be learned easily, because the pores are clearly visible inside 

the material. However, some samples are more difficult to be learned, because the pores are 

nearly invisible. This allows us to generate data with a wide variety and hence the network can 

predict on different data. To train the neural networks, we can mix the real and synthetic data or 

use them separately. The real data was annotated manually by two operators.  

 

To create a dataset of this volume we sliced it into 64x64x64 blocks. Only the blocks with a 

mean density greater than 50% of the grayscale range are used, to avoid too much empty volumes 

in the training data. Another advantage of synthetic data is the class balance. We have two 

classes, where 0 corresponds to material and surrounding air and 1 for the defects. Because of 

the size of the defects there is a high imbalance between the classes. By generating data with 

more features than in the real data, we could reduce the imbalance. Reducing the size of the 

volume to 64x64x64 also leads to better balance between the size of defects compared to full 

volume. In Table 1details of our dataset for training, evaluation and testing are shown. The 

synthetic data will not be recombined to a larger volume as they represent separate small 

components or full material units. 

Table 1: Overview of used datasets. 

Name Description Resolution No. of 

samples 

No. of 

training 

samples 

No. of 

evaluation 

samples 

No. of test 

samples 

Gdata synthetic 64x64x64 7249 6198 688 363 

Rdata real  64x64x64 156 135 15 6 

Mdata mixed 64x64x64 7405 6334 703 368 

 

The following two slices of real data (Figure 1) and synthetic data (Figure 2) with annotated 

defects show the conformity between the data. 
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Figure 1: Sample slice of real data with size of 

64x64x64 voxel. 
Figure 2: Sample slice of synthetic data with size 

of 64x64x64 voxel. 

4 Hardware and software setup 

Deep learning (DL) consist of two phases: The training and its application. While DL models 

can be executed very fast, the training of the neural network can be very time-consuming, 

depending on several factors. One major factor is the hardware. The time consumed can be 

reduced by the factor of around ten when graphics cards (GPUs) are used. [8] To cache the 

training data, before it is given into the model, calculated on the GPU, a lot of random-access 

memory (RAM) is used [9] [10] [11]. Our system is built on a dual CPU hardware with 10 cores 

each running at 2.1 GHz and a Nvidia GPU Titan RTX5 with 24GB of VRAM and 64GB of 

regular RAM. All measurements in this work concerning training and execution time are related 

to this hardware setup. 

 

The operating system is Ubuntu 18.4LTS. Anaconda is used for python package management 

and deployment. The DL-Framework is Tensorflow6 2.1 and Keras as a submodule in Python7.    

5 Neural network architecture 

Based on the 3DU-Net [12] and 3DV-Net [3] architecture compared from Paichao et al. [13] we 

created modified versions which differ in number of layers and their hyperparameters. Due to 

the small size of our data, no patch division is necessary. Instead the training is performed on the 

full volumes. We actually do not use the Z-Net enhancement proposed in their paper. The input 

size, depending on our data, is defined to 64x64x64x1 with 1 dimension for channel. The 

incoming data will be normalized. As we have a binary segmentation task, our output activation 

is the sigmoid [14] function. Based on Paichao et al. [13] the convolutional layer of our 3DU-

Nets have a kernel size of (3, 3, 3) and the 3DV-Nets have a kernel size of (5, 5, 5). As 

convolution activation function we are using ELU [14] [15] and he_normal [16] as kernel 

initialization [17]. The ADAM optimisation method [18] [19] is used with a starting learning 

5 Product page: https://www.nvidia.com/de-at/titan/titan-rtx/ - 20/03/12 
6 Details available at: https://www.tensorflow.org/ - 20/03/12 
7 Details available at: https://keras.io/ - 20/03/12 
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rate of 0.0001, a decay factor of 0.1 and the loss function is the binary cross-entropy [20]. Figure 

3 shows a sample 3DU-Net architecture where downwards max pooling and upwards transposed 

convolution are used. Compared to Figure 4, the 3DV-Net, where we have a fully convolutional 

neural network, the descend is done with a (2, 2, 2) convolution and a stride of 2 and ascent with 

transposed convolution. It also has a layer level addition of the input of this level added to the 

last convolution output of the same level, as marked by the blue arrows. To adapt the shapes of 

the tensors for adding them, the down-convolution and the last convolution of the same level, 

have to have the same number of kernel filters. 

 
Figure 3: Sample U-Net architecture for building reference. 

 
Figure 4: Sample V-Net architecture for building reference. 

Our modified neural network differ in the levels of de-/ascending, the convolution filter kernel 

size and their hyperparameters, shown in Table 2. The convolutions on one level have the same 

number of filter kernel. After every down convolution the number of filters is multiplied by 2 

and on the way up divided by 2.  
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Table 2: Tested models and their base specifications. 

Architecture Starting 

Kernel 

Number 

Kernel Size Down/Up-

Levels 

Hyperparameter 

U-Net_small 16 (3, 3, 3) 3_BOTTOM_3 1,40 x106 

U-Net_large 16 (3, 3, 3) 5_BOTTOM_5 3,41 x107 

V-Net_small 16 (5, 5, 5) 3_BOTTOM_3 1,06 x107 

V-Net_large 16 (5, 5, 5) 5_BOTTOM_5 1,77 x108 

6 Training and evaluation of the neural networks 

The conditions of a training and a careful parameters selection is important. In Table 3 the 

training conditions fitted to our system and networks are shown. We are also taking into account 

that different network architectures and number of layers are better performing on different 

learning rates, batch size, etc.  

Table 3: Training conditions. 

Parameter Description Value 

Batchsize Number of sample per iteration 5 

Epochs Number of iterations of all samples 15-90 

Learning rate Factor for weight adjustment 0.001 

Shuffle data Shuffle data before loading in batches True 

Learning rate decay Reduction of learning rate when reaching plateau 0.1 

 

To evaluate our trained models, we are mainly focusing on the IoU metric, also called Jackard 

Index, which is the intersection over union. This metric is widely used for segmentation tasks 

and compares the intersection over union between the prediction and ground truth for each voxel. 

The value of IoU range between 0 and 1, whereas the loss values range between 0 and infinite. 

Therefore, the IoU is a much clearer indicator. An IoU close to 1 indicates a high intersection-

precision between the prediction and the groundtruth. Our networks where trained between 30 

and 90 epochs until no more improvement could be achieved. Both datasets consist of a similar 

number of samples, which means the epoch time is equivalent. One epoch took around 4 minutes. 

Figure 5 shows the loss determined based on the evaluation data. As described in Fehler! 

Verweisquelle konnte nicht gefunden werden., all models are trained on and evaluated against 

the synthetic dataset Gdata and on the mixed dataset Mdata. In general, the loss achieved by all 

models is higher on Mdata because the real data is harder to learn. A direct comparison between 

the models is only possible between models with the same architecture. The IoU metric shown 

in Figure 6. Here the evaluation is sorted based on the IoU metric. If we compare the loss of 

UNET-Mdata with UNET-Gdata, which are nearly the same for Mdata, with their corresponding 

IoU (UNET-Mdata (~0.8) and UNET-Gdata (~0.93)), we can see that a lower loss does not 

necessarily lead to higher IoU score. If only the loss and IoU are considered, the UNets tend to 
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be better than the VNets. As a conclusion, considering the IoU metric for model selection, the 

UNET-Gdata is the best performing model and VNET-Gdata the least performing. 

  

Figure 5: The evaluation loss determined based 

on the evaluation data sorted from lowest to 

highest. 

Figure 6: The evaluation IoU determined based 

on the evaluation data sorted from lowest to 

highest. 

 

After comparing the automatic evaluation, we show prediction samples of different models on 

real and synthetic data (Table 4). Rows 1 and 2 show the comparison between UNET-Gdata and 

VNET-Gdata, predicting on a synthetic test sample. The result of UNET-Gdata exactly hits the 

groundtruth, whereas the VNET-Gdata prediction has a 100% overlap to the groundtruth but 

with surrounding false positive segmentations. In row 3 and 4 both models predict the 

groundtruth plus some false positive segmentations in the close neighbourhood. In row 5 and 6 

the prediction results of the same two models on real data is shown, taking into account that both 

models are not trained on real data. UNET-Gdata delivers a good precision with some false 

positive segmentations in thegroundtruth area and one additional segmented defect. This shows 

that the model was able to find a defect which was missed by the expert. VNET-Gdata shows a 

very high number of false positive segmentations.  
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Table 4: Overview of predictions by different models on synthetic and real test samples. 

Model Data 

type 

Sample Groundtruth Prediction 

UNET-

Gdata 
synthetic 

   

VNET-

Gdata 
synthetic 

   

UNET-

Gdata 
synthetic 

   

VNET-

Gdata 
synthetic 

   

UNET-

Gdata 
real 

   

VNET-

Gdata 
real 

   

7 Conclusion 

In this paper, we have proposed a neural network to find defects in real and synthetic industrial 

CT volumes. We have shown that neural networks, developed for medical applications can be 

adapted to industrial applications. To achieve high accuracy, we used a large variety of features 

in our data. Based on the evaluation and manually reviewing random samples we have chosen 

the UNET architecture for further research. This model achieved great performance on our real 

and synthetic dataset. In summery this paper shows that the artificial intelligence and their neural 

networks will take an import enrichment in industrial issues. 
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Abstract. The stress is increasing in our society in the last years, due the large and tiring 
routines besides few time to rest. Keeping this in mind, this paper intends to determine 
patterns in stress’ events using physiological signs, because these signals are a reliable 
source to identify stress states. The literature shows that the use of physiological signs as a 
source for stress patterns identification is a promising investigation subject and there are 
few studies evaluating the effect of combining several different signals. The objective of 
this article is to investigate the possible integration of data obtained from 
electrocardiographic (ECG), electrodermal activity (EDA) and electromyography (EMG) 
to detect stress patterns using wearable sensors to acquisition of biofeedback and propose 
algorithms to set some patterns. It was developed a dataset to made the pre-processing in 
all of data to evaluate the plausibility and develop an adequate database for the application 
of machine learning techniques establishing as a reference the obtained annotated data. 

Keywords: Wearable sensors, Stress, Biofeedback. 

1 Introduction 

Stress can affect all aspects of our lives, including our emotions, behaviors, thinking ability, and 
physical health, making our society sick – both mentally and physically. Among the effects that 
the stress and anxiety can cause are heart diseases, such as coronary heart disease and heart 
failure [5]. Due this information, this research will present a proposal to help people handling 
stress using the benefit of technology development and to set patters of stress status as way to 
propose some intervention, once the first step to controlling stress is to know the symptoms of 
stress. 
 The stress symptoms are very board and can be confused with others diseases according The 
American Institute of Stress [15], for example the frequent headache, irritability, insomnia, 
nightmares, disturbing dreams, dry mouth, problems swallowing, increased or decreased 
appetite, or even cause other diseases such as frequent colds and infections. In view of the wide 
variety of symptoms caused by stress, this research intends to define, through physiological 
signals, the patterns generated by the body and obtained by wearable sensors and develop a 
standardized database to apply the machine learning. 

2 Problem and Motivation 

According to a research of The American Institute of Stress [15], 77% of people regularly 
experience physical symptoms caused by stress, 51% of them are related to fatigue. In other 
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hand, advances in sensor technology, wearable devices and mobile growth would help to online 
stress identification based on physiological signals and delivery of psychological interventions. 
Currently with the advancement of technology and improvements in the wearable sensors area, 
made it possible to use these devices as a source of data to monitor the user’s physiological state. 
The majority of the wearable devices consist of low-cost board that can be used to the acquisition 
of physiological signals [1, 10]. After the data are obtained it is necessary apply some filters to 
clear signal, without noise or distortions aiming to use some Machine Learning approaches to 
model and predict these stress states [2, 11]. 
 The wide-spread use of mobile devices and microcomputers, as Raspberry Pi, and its 
capabilities presents a great possibility to collect, and process those signs with an elaborated 
application. These devices can collect the physiological signals and detect specific stress states 
to generate interventions following the predetermined diagnosis based on the standards already 
evaluated in the system [9, 6]. During the literature review it was evident the presence of few 
works dedicated to evaluating comprehensively the complete cycle of biofeedback, which 
comprises using the wearable devices, applying Machine Learning patterns detection algorithms, 
generate the psychologic intervention, besides monitoring its effects and recording the history of 
events [9, 3]. 

3 Background and Related Works 
Stress is identified by professionals using human physiology, so wearables sensors could help 
on data acquisition and processing, through machine learning algorithms on biosignal data, 
suggesting psychological interventions. Some works [6, 14] are dedicated to define patterns as 
experiment for data acquisition simulation real situations. Jebelli, Khalili and Lee [6] showed a 
deep learning approach that was used to compare with a baseline feedforward artificial neural 
network. 
 Schmidt et al. [12] describes Wearable Stress and Affect Detection (WESAD), one public 
dataset used to set classifiers and identify stress patterns integrating several sensors signals with 
the emotion aspect with a precision of 93% in the experiments. The work of Gaglioli et al. [4] 
describe the main features and preliminary evaluation of a free mobile platform for the self-
management of psychological stress. 
 In terms of the wearables, some studies [13, 14] evaluate the usability of devices to monitory 
the signals and the patient's well-being. Pavic et al. [13] showed a research performed to monitor 
cancer patients remotely and as the majority of the patients have a lot of symptoms but cannot 
stay at hospital during all treatment. The authors emphasize that was obtained good results and 
that this system is viable, as long as the patient is not a critical case, as it does not replace medical 
equipment or the emergency care present in the hospital. 
 Henriques et al. [5] focus was to evaluated the effects of biofeedback in a group of students 
to reduce anxiety, in this paper was monitored the heart rate variability with two experiments 
with duration of four weeks each. The work of Wijman [8] describes the use of EMG signals to 
identify stress, this experiment was conducted with 22 participants, evaluating both the 
wearables signals and questionnaires. 
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4 Approach and Uniqueness 

In this section will be described the uniqueness of this research and the devices that was used. 
This solution is being proposed by several literature study about stress patterns and physiological 
aspects but with few results, for this reason, our project will address topics like experimental 
study protocol on signals acquisition from patients/participants with wearables to data 
acquisition and processing, in sequence will be applied machine learning modeling and 
prediction on biosignal data regarding stress (Fig. 1). 
 

 
Fig. 1. The acquisition system 

 The protocol followed to the acquisition of signals during all different status is the Trier 
Social Stress Test (TSST) [7], recognized as the gold standard protocol for stress experiments. 
The estimated total protocol time, involving pre-tests and post-tests, is 116 minutes with a total 
of thirteen steps, but applied experiment was adapted and it was established with ten stages: 
Initial Evaluation: The participant arrives, with the scheduled time, and answer the 
questionnaires; Habituation: It will take a rest time of twenty minutes before the pre-test to avoid 
the influence of events and to establish a safe baseline of that organism; Pre-Test: The sensors 
will be allocated (Fig. 2), collected saliva sample and applied the psychological instruments. 

 
Fig. 2. Sensors Allocated 

 The next step is Explanation of procedure and preparation: The participant reads the 
instructions and the researcher ensures that he understands the job specifications, in sequence, 
he is sent to the room with the jurors (Fig. 3), composed of two collaborators of the research, 
were trained to remain neutral during the experiment, not giving positive verbal or non-verbal 
feedback; Free Speech: After three minutes of preparation, the participant is requested to start 
his speech, being informed that he cannot use the notes. 
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Fig. 3. Participant and the jurors 

 This will follow the  Arithmetic Task: the jurors request an arithmetic task in which the 
participant must subtract mentally, sometimes, the jurors interrupt and warn that the participant 
has made a mistake; Post-Test Evaluation: The experimenter receives the subject outside the 
room for the post-test evaluations; Feedback and Clarification: The investigator and jurors talk 
to the subject and clarify what the task was about; Relaxation technique: A recording will be 
used with the guidelines on how to perform a relaxation technique, using only the breathing; 
Final Post-Test: Some of the psychological instruments will be reapplied, saliva samples will be 
collected, and the sensors will still be picking up the physiological signals. 
 Based on literature [14] and wearable devices available the signals that was selected to 
analysis is the ECG, EDA and EMG for an initial experiment. This experimental study protocol 
on data acquisition started with 71 participants, where data annotation each step was done 
manually, from protocol experiment, preprocessing data based on features selection. In the 
Machine Learning step, it was evaluated the metrics of different algorithms as Decision Tree, 
Random Forest, AdaBoost, KNN, K-Means, SVM. 
 The experiment was made using the BITalino Kit - PLUX Wireless Biosignals S.A. (Fig. 4) 
composed by ECG sensor, which will provide data on heart rate and heart rate variability; EDA 
sensor that will allow measure the electrical dermal activity of the sweat glands; EMG sensor 
that allows the data collect the activity of the muscle signals. 

 

   
Fig. 4. BeWell prototype 

5 Results 

This section will describe the results in the pre-processing step and how it was made, listing all 
parts regarded to categorization and filtering data, evaluating the signal to know if it has 
plausibility and create a standardized database. The developed code is written in Python due to 
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the wide variety of libraries available, in this step was used the libraries NumPy and Pandas, 
both used to data manipulation and analysis. 
 In the first step it is necessary read the files with the raw data and the timestamp, during this 
process the used channels are renamed to the name of the signal, because the BITalino store the 
data with the channel number as name of each signals. In sequence, the data timestamp is 
converted to a useful format, with goal to compare with the annotations, after time changed to 
the right format all channels unused are discarded to avoid unnecessary processing. The next 
step is to read the annotations taken manually in the experiment, as said before, to compare the 
time and classify each part of the experiment with its respective signal. 
 After all signals are classified with its respective process of the TSST, each part of the 
experiment is grouped in six categories, which will be analyzed later. The first category is the 
“baseline”, with just two parts of the experiment, representing the beginning of the experiment, 
when the participants had just arrived. The second is called of “tsst” comprises the period in 
which the participant spoke, the third category is the “arithmetic” with the data in acquired in 
the arithmetic test. 
 The others two relevant categories are the “post_test_sensors_1” and “post_test_sensors_2”, 
with its respective signals in the parts called with the same name. Every other part of the 
experiment was categorized as “no_category”, in sequence, this category is discarded in function 
of it will not be necessary in the machine learning stage. After the dataframe is right with all 
signals properly classified, the columns with the participants number and the timestamp are 
removed of the dataframe. The next step is evaluated the signal, to verify if the signal is really 
useful in the process of machine learning. For this, it is analyzed the signals using the BioSPPy 
library, which performs the data filtering process and makes it possible to view the data. 
 Finally, the script checks the volume of data present in each classification and returns the 
value of the smallest category. This is done because it was found that the categories have 
different volumes of data, which would become a problem in the machine learning stage, by 
offering more data from a determinate category than from the others. Due this fact, the code 
analyzes the others categories and reduce its size until all categories stay with the same number 
of rows in each category (); after this the dataframe is exported in a CSV file, to be read in the 
machine learning stage. 
 

 
Fig. 5. Standardization of data 
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6 Conclusion 

The purpose of this article is to describe some stages of the development of a system for the 
acquisition and analysis of physiological signals to determine patterns in these signals that would 
detect stress states. During the development of the project was verified that there are data gaps 
in the dataframe in the middle of the experiment in some participants; A hypothesis about the 
motivation of this had happened is the sampling of the acquisition of BITalino regarding 
communication issues in some specifics sampling rates. 
 It evaluate the results obtained when reducing this acquisition rate, however, it is necessary 
to carefully evaluate the extent to which the reduction in the sampling rate will interfere with the 
results. During the evaluation of the plausibility of the signals, it was verified that there are 
evident differences between the signals patterns in the different stages of the process, thus 
validating the protocol followed in the acquisition of the standards. The next step in this project 
is implement the machine learning stage, applying different algorithms as SVM, Decision Tree, 
Random Forest, AdaBoost, KNN and K-Means; besides to evaluate the results using metrics like 
Accuracy, Precision, Recall and F1. 
 The next steps of this research will support the confirmation of the hypothesis raised about 
being able to define patterns of physiological signals to detect stress states. From the definition 
of the patterns, a system can be applied that identifies the acquisition of the signals and, in real 
time, performs the analysis of these data based on the machine learning results. Therefore we 
can detect the state of the person and that the psychologist can indicate a proposal intervention 
and monitor whether the decrease is occurring. 
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Abstract. The promise of artificial intelligence (AI), in particular its latest de-
velopments in deep learning, has been influencing all kinds of disciplines such as
engineering, business, agriculture, and humanities. More recently it also includes
disciplines that were exclusively reserved for humans such as art and design. While
there is a strong debate going on if creativity is profoundly human, we investigate
if creativity can be fostered by AI. To get a better understanding of the creative
potential offered by AI we open the black box and investigate where and how
the magic is happening. Besides the potentials of AI, we also point out and dis-
cuss ethical and social implications caused by the latest developments in AI with
respect to the creative sector.

Keywords: inspirational AI; human-machine co-design; moral issues

1 Introduction

Technological developments have been influencing all kinds of disciplines by transferring
more competences from human beings to technical devices. The steps inculde [1]:

1. tools: transfer of mechanics (material) from the human being to the device
2. machines: transfer of energy from the human being to the device
3. automatic machines1: transfer of information from the human being to the device
4. assistants: transfer of decisions from the human being to the device

With the introduction of artificial intelligence (AI), in particular its latest developments
in deep learning, we let the system (in step 4) take over our decisions and creation
processes. Thus, tasks and disciplines that were exclusively reserved for humans in the
past can now co-exist or even take the human out of the loop. It is no wonder that this
transformation is not stopped at disciplines such as engineering, business, agriculture
but also affects humanities, art and design. Each new technology has been adopted for
artistic expression—just see the many wonderful examples in media art. Therefore, it
is not surprising, that AI is going to be established as a novel tool to produce creative
content of any form. However, in contrast to other disruptive technologies, AI seems
particular challenging to be accepted in the area of art because it offers capabilities we
thought once only humans are able to perform—the art is no longer done by artists using
new technology to perform their art, but the art is done by the machine itself without
the need for a human to intervene. The question of “what is art” has always been an
emotionally debated topic in which everyone has a slightly different definition depending

1 Automatic machine is called Automat or automate in other languages such as German or
French respectively.

UR-AI 2020 // 41



on his or her own experiences, knowledge base and personal aesthetics. However, there
seems to be a broad consensus that art requires human creativity and imagination as,
for instance, stated by the Oxford dictionary “The expression or application of human
creative skill and imagination, typically in a visual form such as painting or sculpture,
producing works to be appreciated primarily for their beauty or emotional power.”

Every art movement challenges old ways and uses artistic creative abilities to spark
new ideas and styles. With each art movement diverse intentions and reasons for creating
the artwork came along with critics who did not want to accept the new style as an art-
form. With the introduction of AI into the creation process another art movement is
trying to be established which is fundamentally changing the way we see art. For the
first time, AI has the potential to take the artist out of the loop, to leave humans only in
the positions of curators, observers and judges to decide if the artwork is beautiful and
emotionally powerful.

2 Fostering Inspiration

While there is a strong debate going on in the arts if creativity is profoundly human, we
investigate how AI can foster inspiration, creativity and produce unexpected results. It
has been shown by many publications that AI can generate images, music and the like
which can resemble different styles and produce artistic content. For instance, Elgammal
et al. [2] have used generative adversarial networks (GAN) to generate images by learning
about styles and deviating from style norms. The promise of AI-assisted creation is “a
world where creativity is highly accessible, through systems that empower us to create
from new perspectives and raise the collective human potential” as Roelof Pieters and
Samim Winiger pointed out [3]. To get a better understanding of the process on how AI
is capable to propose images, music, etc. we have to open the black box to investigate
where and how the magic is happening.

2.1 Random & Constrained Variations

Random variations in the image space (sometimes also referred to as pixel space) are
usually not leading to any interesting result. This is because semantic knowledge cannot
be applied. Therefore, methods need to be applied which constrain the possible variations
of the given dataset in a meaningful way. This can be realized by generative design
or procedural generation. It is applied to generate geometric patterns, textures, shapes,
meshes, terrain or plants. The generation processes may include, but are not limited, to
self-organization, swarm systems, ant colonies, evolutionary systems, fractal geometry,
and generative grammars. McCormack et al. [4] review some generative design approaches
and discuss how art and design can benefit from those applications. These generative
algorithms which are usually realized by writing program code are very limited. AI can
change this process into data-driven procedures. AI, or more specifically artificial neural
networks, can learn patterns from (labeled) examples or by reinforcement.

Before an artificial neural network can be applied to a task (classification, regres-
sion, image reconstruction), the general architecture is to extract features through many
hidden layers. These layers represent different levels of abstractions. Data that have a
similar structure or meaning should be represented as data points that are close together
while divergent structures or meanings should be further apart from each other. To con-
vert the image back (with some conversion/compression loss) from the low dimensional
vector, which is the result of the first component, to the original input an additional
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component is needed. Together they form the autoencoder which consists of the encoder
and the decoder . The encoder compresses the data from a high dimensional input space
to a low dimensional space, often called the bottleneck layer. Then, the decoder takes
this encoded input and converts it back to the original input as closely as possible. The
latent space is the space in which the data lies in the bottleneck layer. If you look at
Figure 1 you might be wondering why a model is needed that converts the input data
into a “close as possible” output data. It seems rather useless if all it outputs is itself.
As discussed, the latent space contains a highly compressed representation of the input
data, which is the only information the decoder can use to reconstruct the input as faith-
fully as possible. The magic happens by interpolating between points and performing
vector arithmetic between points in latent space. These transformations result in mean-
ingful effects on the generated images. As dimensionality is reduced, information which
is distinct to each image is discarded from the latent space representation, since only the
most important information of each image can be stored in this low-dimensional space.
The latent space captures the structure in your data and usually offers some semantic
meaningful interpretation. This semantic meaning is, however, not given a priori but has
to be discovered.

original
image

reconstructed
image

latent
space

bottleneck decoderencoder

Fig. 1. The general architecture of an autoencoder.

2.2 Exploring the Latent Space

As already discussed autoencoders, after learning a particular non-linear mapping, are
capable of producing photo-realistic images from randomly sampled points in the latent
space. The latent space concept is definitely intriguing but at the same time non-trivial
to comprehend. Although latent space means hidden, understanding what is happening
in latent space is not only helpful but necessary for various applications. Exploring the
structure of the latent space is both interesting for the problem domain and helps to
develop an intuition for what has been learned and can be regenerated. It is obvious
that the latent space has to contain some structure that can be queried and navigated.
However, it is non-obvious how semantics are represented within this space and how
different semantic attributes are entangled with each other.

To investigate the latent space one should favor a dataset that offers a limited and
distinctive feature set. Therefore, faces are a good example in this regard because they
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share features common to most faces but offer enough variance. If aligned correctly
also other meaningful representations of faces are possible, see for instance the widely
used approach of eigenfaces [5] to describe the specific characteristic of faces in a low
dimensional space.

In the latent space we can do vector arithmetic. This can correspond to particular
features. For example, the vector Asmiling woman representing the face of a smiling woman
minus the vector Aneutral woman representing a neutral looking woman plus the vector
Aneutral man representing a neutral looking man resulted in the vector Asmiling man

representing a smiling man.

Asmiling woman −Aneutral woman + Aneutral man = Asmiling man

This can also be done with all kinds of images; see e.g. the publication by Radford et
al. [6] who first observed the vector arithmetic property in latent space. A visual example
is given in Figure 2. Please note that all images shown in this publication are produced
using BigGAN [7]. The photo of the author on which most of the variations are based
on is taken by Tobias Schwerdt.

+ =_

Fig. 2. In latent space, vector algebra can be carried out.

Semantic editing requires to move within the latent space along a certain ‘direction’.
Identifying the ‘direction’ of only one particular characteristic is non-trivial since edit-
ing one attribute may affect others because they are correlated. This correlation can be
attributed to some extent to pre-existing correlations in ‘the real world’ (e.g. old per-
sons are more likely to wear eyeglasses) or bias in the training dataset (e.g. more women
are smiling on photos than men). To identify the semantics encoded in the latent space
Shen et al. proposed a framework for interpreting faces in latent space [8]. Beyond the
vector arithmetic property, their framework allows decoupling some entangled attributes
(remember the aforementioned correlation between old people and eyeglasses) through
linear subspace projection. Shen et al. found that in their dataset pose and smile are
almost orthogonal to other attributes while gender, age, and eyeglasses are highly corre-
lated with each other. Disentangled semantics enable precise control of facial attributes
without retraining of any given model. In our examples, in Figures 3 and 4, faces are
varied according to gender or age.

It has been widely observed that when linearly interpolate between two points in la-
tent space the appearance of the corresponding synthesized images ‘morphs’ continuously
from one face to another; see Figure 5. This implies that also the semantic meaning con-
tained in the two images changes gradually. This is in stark contrast to having a simple
fading between two images in image space. It can be observed that the shape and style
slowly transform from one image into the other. This demonstrates how well the latent
space understands the structure and semantics of the images. Other examples are given
in Section 3.
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Fig. 3. The age of a person can be changed by moving from the location of young to old in the
latent space.

Fig. 4. The gender of a person can be changed by moving from the location of male to female
in the latent space.

Even though our analysis has focused on face editing for the reasons discussed earlier
it holds true also for other domains. For instance, Bau et al. [9] generated living rooms
using similar approaches. They showed that some units from intermediate layers of the
generator are specialized to synthesize certain visual concepts such as sofas or TVs.

So far we have discussed how autoencoders can connect the latent space and the image
semantic space, as well as how the latent code can be used for image editing without
influencing the image style. Next, we want to discuss how this can be used for artistic
expression.

2.3 Sweet Spots in Latent Space

While in the former section we have seen how to use manipulation in the latent space to
generate mathematical sound operations not much artistic content has been generated—
just variations of photography like faces. Imprecision in AI systems can lead to unaccept-
able errors in the system and even result in deadly decisions; e.g. at autonomous driving
or at cancer treatment. In the case of artistic applications, errors or glitches might lead
to interesting, non-intended, artifacts. If those errors or glitches are treated as a bug or
a feature lies in the eye of the artist. To create higher variations in the generated output
some artists randomly introduce glitches within the autoencoder. Due to the complex
structure of the autoencoder these glitches (assuming that they are introduced at an
early layer in the network) occur on a semantic level as already discussed and might
cause the models to misinterpret the input data in interesting ways. Some could even
be interpreted as glimpses of autonomous creativity; see for instance the artistic work
‘Mistaken Identity’ by Mario Klingemann [10].

So far the latent space is explored by humans either by random walk or intuitive
steering into a particular direction. It is up to human decisions if the synthesized image
of a particular location in latent space is producing a visually appealing or otherwise
interesting result. The question arises where to find those places and if those places can
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Fig. 5. The facial features of a person or the style of representation can be explored by changing
the respective parameters in the latent space.
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be spotted by an automatized process. The latent space is usually defined by a space of
ddimensions for which it is assumed the data to be represented as multivariate Gaussian
distributions N (0, Id) [11]. Therefore, the mean representation of all images lies in the
center of the latent space. But what does that mean for the generated results? It is
said that “beauty lies in the eyes of the beholder”, however, research shows that there
is a common understanding of beauty. For instance, averaged faces are perceived as
more beautiful [12]. Adopting these findings to latent space let us assume that the most
beautiful images (in our case faces) can be found in the center of the space. Particular
deviations from the center stand for local sweet spots (e.g. female and male, ethnic
groups). These types of sweet spots can be found by common means of data analysis (e.g.
clustering). But where are interesting local sweet spots if it comes to artistic expression?
Figure 6 demonstrates some variation in style within the latent space.

Of course, one can search for locations in the latent space where particular artworks
from a given artist or art styles are located; see e.g. Figure 7 where the styles of different
artists, as well as white noise2, have been used for adoption. But isn’t lingering around
these sweet spots not only producing “more of the same”? How to find the local sweet
spots which can define a new art style and can be deemed truly creative? Or do those
discoveries of new art style lie outside of the latent space, because the latent space is
trained within a particular set of defined art styles and can, therefore, produce only
interpolations of those styles but nothing conceptually new?

Fig. 6. The style of the image can be changed (from left to right with increasing variation) by
varying parameters in the latent space which represent style instead of facial features.

Fig. 7. The style of different source images is transferred to the target image. The styles of
the images (from left to right) are Roy Lichtenstein, Friedensreich Hundertwasser, Joan Miro,
Vincent van Gogh, and white noise.

2 White noise is a signal with an equal spread frequency spectrum.
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3 Example Artworks

So far we have discussed how AI can help to generate different variations of faces and
where to find visually interesting sweet spots. In this section, we want to show how AI
is supporting the creation process by applying the discussed techniques to other areas of
image and object processing.3

3.1 Images

Probably, different variations of image-to-image translation are the most popular ap-
proach at least if looking at the mass media. The most prominent example is style
transfer—the capability to transfer the style of one image to draw the content of an-
other (examples are shown in Figure 7). But mapping an input image to an output
image is also possible for a variety of other applications such as object transfiguration
(e.g. horse-to-zebra, apple-to-orange, season transfer (e.g. summer-to-winter) or photo
enhancement [13]. While some of the just mentioned systems are not yet in a state to be
widely applicable, AI tools are taking over and gradually automating design processes
which used to be time-consuming manual processes. Indeed, the most potential for AI
in art and design is seen in its application to tedious, uncreative tasks such as coloring
black-and-white images [14].

Marco Kempf and Simon Zimmerman used AI in their work dubbed ‘DeepWorld’ to
generate a compilation of ‘artificial countries’ using data of all existing countries (around
195) to generate new anthems, flags and other descriptors [15]. Roman Lipski uses an AI
muse (developed by Florian Dohmann et al.) to foster his/her inspiration [16]. Because
the AI muse is trained only on the artist’s previous drawings and fed with the current
work in progress it suggests image variations in line with Roman’s taste.

3.2 Objects

Cluzel et al. have proposed an interactive genetic algorithm to progressively sketch the
desired side-view of a car profile [17]. For this, the user has taken on the role of a fit-
ness function4 through interaction with the system. The chAIr Project [18] is a series
of four chairs co-designed by AI and human designers. The project explores a collabo-
rative creative process between humans and computers. It used a GAN to propose new
chairs which then have been ‘interpreted’ by trained designers to resemble a chair. Deep-
Wear [19] is a method using deep convolutional GANs for clothes design. The GAN is
trained on features of brand clothes and can generate images that are similar to actual
clothes. A human interprets the generated images and tries to manually draw the corre-
sponding pattern which is needed to make the finished product. Li et al. [20] introduced
an artificial neural network for encoding and synthesizing the structure of 3D shapes
which—according to their findings—are effectively characterized by their hierarchical or-
ganization. German et al. [21] have applied different AI techniques trained by a small
sample set of shapes of bottles, to propose novel bottle-like shapes. The evaluation of
their proposed methods revealed that it can be used by trained designers as well as non-
designers to support the design process in different phases and that it could lead to novel
designs not intended/foreseen by the designers.

3 Of course these techniques have been also successfully applied to other areas such as audio
and video, but should not be presented here.

4 also referred to as objective function

UR-AI 2020 // 48



4 Ethical and Social Implications

For decades, AI has fostered (often false) future visions ranging from transhumanist
utopia to “world run by machines” dystopia. Artists and designers explore solutions
concerning the semiotic, the aesthetic and the dynamic realm, as well as confronting cor-
porate, industrial, cultural and political aspects. The relationship between the artist and
the artwork is directly connected through their intentions, although currently mediated
by third-parties and media tools. Understanding the ethical and social implications of
AI-assisted creation is becoming a pressing need. The implications, where each has to be
investigated in more detail in the future, include:

– Bias: Al systems are sensitive to bias. As a consequence, the AI is not being a neutral
tool, but has pre-decoded preferences. Bias relevant in creative AI systems are:

• Algorithmic Bias occurs when a computer system reflects the implicit values
of the humans who created it; e.g. the system is optimized on dataset A and
later retrained on dataset B without reconfiguring the neural network (this is
not uncommon, as many people do not fully understand what is going on in the
network, but are able to use the given code to run training on other data).
• Data Bias occurs when your samples are not representative of your population

of interest.
• Prejudice Bias results from cultural influences or stereotypes which are reflected

in the data.

– Art Crisis: Until 200 years ago painting served as the primary method for visual
communication and was a widely and highly respected art form. With the invention
of photography, painting began to suffer an identity crisis because painting—in its
current form then—was not able to reproduce the world as accurate and with as low
effort as photography. As a consequence visual artists had to change to different forms
of representations not possible by photography inventing different art styles such as
impressionism, expressionism, cubism, pointillism, constructivism, surrealism, up to
abstract expressionism. At the time AI can perfectly simulate those styles what will
happen with the artists? Will artists still be needed, be replaced by AI, or will they
have to turn to other artistic work which yet cannot be simulated by AI?

– Inflation: Similar to the image flood which has reached us the same can happen with
AI art. Because of the glut, nobody is valuing and watching the images anymore.

– Wrong Expectations: Only esthetic appealing or otherwise interesting or surprising
results are published which can be contributed to similar effects as the well-known
publication bias [22] in other areas. Eventually, this is leading to wrong expectations
of what is already possible with AI. In addition, this misunderstanding is fueled
by content claimed to be created by AI but has indeed been produced—or at least
reworked—either by human labor or by methods not containing AI.

– Unequal Judgment : Even though the raised emotions in viewing artworks emerge
from its underlying structure in the works, people also include the creation process
in their judgment (in the cases where they know about it). Frequently, becoming
to know that a computer or an AI has created the artwork, in the opinion of the
people it turns boring, has no guts, no emotion, no soul while before it was inspiring,
creative and beautiful.

– Authorship: The authorship of AI-generated content has not been clarified. For in-
stance, is the authorship of a novel song composed by an AI trained exclusively on
songs by Johann Sebastian Bach belonging to the AI, the developer/artist, or Bach?
See e.g. [23] for a more detailed discussion.
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– Trustworthiness: New AI-driven tools make it easy for non-experts to manipulate
audio and/or visual media. Thus, image, audio as well as video evidence is not trust-
worthy anymore. Manipulated image, audio, and video are leading to fake informa-
tion, truth skepticism, and claims that real audio/video footage is fake (known as
the liar’s dividend) [24].

5 Conclusion

The potential of AI in creativity has just been started to be explored. We have investi-
gated on the creative power of AI which is represented—not exclusively—in the semantic
meaningful representation of data in a dimensionally reduced space, dubbed latent space,
from which images, but also audio, video, and 3D models can be synthesized. AI is able
to imagine visualizations that lie between everything the AI has learned from us and far
beyond and might even develop its own art styles (see e.g. deep dream [25]). However,
AI still lacks intention and is just processing data.

Those novel AI tools are shifting the creativity process from crafting to generating
and selecting—a process which yet can not be transferred to machine judgment only.
However, AI can already be employed to find possible sweet spots or make suggestions
based on the learned taste of the artist [21]. AI is without any doubt changing the way
we experience art and the way we do art. Doing art is shifting from handcrafting to
exploring and discovering. This leaves humans more in the role of a curator instead of an
artist, but it can also foster creativity (as discussed before in the case of Roman Lipski)
or reduce the time between intention and realization. It has the potential, just as many
other technical developments, to democratize creativity because the handcrafting skills
are not so much in need to express his/her own ideas anymore. Widespread misuse (e.g.
image manipulation to produce fake pornography) can limit the social acceptance and
require AI literacy. As human beings, we have to ask ourselves if feelings are wrong just
because the AI never felt alike in its creation process as we do? Or should we not worry
too much and simply enjoy the new artworks created no matter if they are done by
humans, by AI or as a co-creation between the two ones?
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Machine learning (ML) algorithms have shown tremendous potentials in numerous fields. Our 

on-going research project PREFERML (Proactive Error Prevention in Manufacturing Based on 

Machine Learning) [1] aims to design and implement a machine learning system for the sake of 

generating prediction models with respect to quality checks and reducing faulty products in 

manufacturing processes. It is based on an industrial case study in cooperation with SICK AG. 

We will present first results of the project concerning a new process model for cooperating data 

scientists and quality engineers, a product testing model as knowledge base for machine learning 

computing and visual support of quality engineers in order to explain prediction results. 

A typical production line consists of various test stations that conduct several measurements. 

Those measurements are processed by the system on the fly, to point out problematic products. 

Among the many challenges, one focus of the project is on support for quality engineers. 

Preparation of prediction models is usually done by data scientists. But the demand for data 

scientists is increasing too fast, when a big number of products, production lines and changing 

circumstances have to be considered. Hence, a software is needed which quality engineers can 

operate directly and leverage the results from prediction models.  

Based on quality management and data science standard processes [2] [3] we created a reference 

process model for production error detection and correction which includes needed actors and 

associated tasks. With ML system and data scientist assistance we bolster the quality engineer 

in his work. 

To support the ML system, we developed a product testing model which includes crucial 

information about a specific product. In this model we describe the relation to product specific 

features, test systems, production lines sequences etc. The idea behind this, is to provide 

metadata information which in turn is used by the ML system instead of individual script 

solutions for each product. 

A ML model with good predictions has often a lack of information about the internal decisions. 

Therefore, it is beneficial to support the quality engineer with useful feature visualizations. By 

default, we support the quality engineer with 2D - 3D feature plots and histograms, in which the 

error distribution is visualized. On top, we developed further feature importance measures based 
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on SHAP values [4]. These can be used to get deeper insight for particular ML decisions to 

significant features which get lower ranked by standard feature importance measures. 
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Abstract. This paper discusses the use of continuously learning AI/ML based medical 

devices, i.e. devices which optimize their performance during the product’s lifetime. For 

such devices, a regulatory strategy was recently proposed by the US Food & Drug 

Administration (FDA). The paper analyzes the options this approach provides as well as 

potential shortcomings it may pose. In particular, it studies the proposed concept of automa-

ted validation for these devices. In this analysis, the assessment of the relationship between 

technical parameters and clinical effects is a main focus. This includes the association to 

potential risks as well the dependencies between the algorithmic outcomes and the clinical 

environment. Additionally, potential issues w.r.t. bias, explainability, and fairness of the 

algorithms are addressed. The paper uses application scenarios, where ML based devices 

are utilized in the intensive care unit (ICU). In summary, ML based medical devices and 

especially continuously learning devices still possess considerable challenges which should 

be addressed thoroughly. Regarding appropriate regulatory strategies, a deliberate approach 

is recommended which prioritizes the collection of sufficient experience with ML based 

devices over amplifying their use in a rather uncontrolled fashion.   

Keywords: Machine Learning, Continuously learning systems, SaMD – Software as a 

Medical Device, Regulatory requirements, Automated validation  

1 Introduction 

Medicine is a highly empirical discipline, where important aspects have to be demonstrated using 

adequate data and sound evaluations. This is one of the core requirements, which were 

emphasized during the development of the Medical Device Regulation (MDR) of the European 

Union (EU) [1]. This applies to all medical devices, including mechanical and electrical devices 

as well as software systems. Also, the US Food & Drug Administration (FDA) recently set a 

focus on the discussions about using data for demonstrating the safety and efficacy of medical 

devices [2]. Beside pure approval steps, they foster the use of data for optimization of the 

products, as nowadays data can be acquired more and more, using modern IT technology. In 

particular, they pursue the use of real world evidence, i.e. data that is collected through the 

lifetime of a device, for demonstrating improved outcomes. [2] 

Such approaches require the use of sophisticated data analysis techniques. Beside classical 

statistics, artificial intelligence (AI) and machine learning (ML) are considered to be powerful 

techniques for this purpose. Currently, they gain more and more attention. These techniques 

allow to detect dependencies in complex situations, where inputs and/or outputs of a problem 

have high-dimensional parameter spaces. This can e.g. be the case when extensive data is 

collected from diverse clinical studies or also treatment protocols from local sites. Furthermore, 

AI/ML based techniques may be used in the devices themselves. For example, devices may be 

developed which are considered to improve complex diagnostic tasks or find individualized 

treatment options for specific medical conditions (see e.g. [3, 4] for an overview). For some 
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applications, it already has been demonstrated that ML algorithms are able to outperform human 

experts with respect to specific success rates (e.g. [5, 6]). In this paper, it will be discussed how 

ML based techniques can be brought onto the market including an analysis of appropriate 

regulatory requirements. For this purpose, the main focus lies on ML based devices applied in 

the intensive care unit (ICU) as e.g. proposed in [7, 8].  

The need for specific regulatory requirements comes from the observation, that AI/ML based 

techniques pose specific risks which need to be considered and handled appropriately. For 

example, AI/ML based methods are more challenging w.r.t. bias effects, reduced transparency, 

vulnerability to cybersecurity attacks, or general ethical issues (see e.g. [9, 10]). In particular 

cases, ML based techniques may lead to noticeably critical results, as it has been shown for the 

IBM Watson for Oncology device. In [11], it was reported that the direct use of the system in 

particular clinical environments resulted in critical treatment suggestions. The characteristics of 

ML based systems led to various discussions about their reliability in the clinical context. It 

requires to find appropriate ways to guarantee their safety and performance. (cf. [12]) This 

applies to the field of medicine / medical devices as well as AI/ML based techniques in general. 

The latter was e.g. approached by the EU in their Ethics guidelines for trustworthy AI [9].  

Driven by this overall development, the FDA started a discussion regarding an extended use of 

ML algorithms in SaMD (software as a medical device) with a focus in quicker release cycles. 

In [13], it pursued the development of a specific process which makes it easier to bring ML based 

devices onto the market and also to update them during their lifecycle. Current regulations for 

medical devices, e.g. in US or EU, do not provide specific guidelines for ML based devices. In 

particular, this applies to systems which continuously collect data in order to improve the 

performance of the device. Current regulations focus on a fixed status of the device, which may 

only be adapted in a minor extent after the release. Usually, a new release or clearance by the 

authority is required, when the clinical performance of a device is modified. But continuously 

learning systems exactly want to do such improvement steps using additional real-world data 

from daily applications without extra approvals (see fig. 1). 

  
Fig. 1. Basic approaches for AI/ML based medical devices. Left side: classical approach, where the status 

of the software has to be fixed after the release / approval stage. Right side: continuously learning system 

where data is collected during the lifetime of the device without a separated release / approval step. In this 

case, an automatic validation step has to guarantee proper safety and efficacy.    

 

In [13], the FDA made suggestions how this could be addressed. It proposed the definition of so 

called SaMD Pre-Specifications (SPS) and an Algorithm Change Protocol (ACP), which are 

considered to represent major tools for dealing with modifications of the ML based system 

during its lifetime. Within the SPS, the manufacturer has to define the anticipated changes which 
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are considered to be allowed during the automatic update process. In addition, the ACP defines 

the particular steps which have to be implemented to realize the SPS specifications. See [13] for 

more information about SPS and ACP. But the details are not yet well elaborated by the FDA at 

the moment. The FDA requested for suggestions with respect to this. 

In particular, these tools serve as a basis for performing an automated validation of the updates. 

The applicability of this approach depends on the risk of the SaMD. In [13], the FDA uses the 

risk categories from the International Medical Device Regulators Forum (IMDRF) [14]. This 

includes the categories State of healthcare situation or condition (critical vs. serious vs. non-

critical) and Significance of information provided by SaMD to healthcare decision (treat or 

diagnose vs. drive clinical management vs. inform clinical management) as the basic attributes. 

According to [13], the regulatory requirements for the management of ML based systems are 

considered to depend on this classification as well as the particular changes which may take place 

during the lifetime of the device. The FDA categorizes them as changes in performance, inputs, 

and intended use. Such anticipated changes have to be defined in the SPS in advance. 

The main purpose of the present paper is to discuss the validity of the described FDA approach 

for enabling continuously learning systems. Therefore, it uses a scenario based technique to 

analyze whether validation in terms of SPS and ACP can be considered adequate tools. The 

scenarios represent applications of ML based devices in the ICU. It checks its consistency with 

other important regulatory requirements and analyzes pitfalls which may jeopardize the safety 

of the devices. Additionally, it discusses whether more general requirements can be sufficiently 

addressed in the scenarios, as e.g. proposed in ethical guidelines for AI based systems like [9, 

10]. This is not considered as a comprehensive analysis of the topics, but as an addition to current 

discussions about risks and ethical issues, as they are e.g. discussed in [10, 12]. 

Finally, the paper proposes own suggestions to address the regulation of continuously learning 

ML based systems. Again, this is not considered to be a full regulatory strategy, but a proposal 

of particular requirements, which may overcome some of the current limitations of the approach 

discussed in [13]. The overall aim of this paper is to contribute to a better understanding of the 

options and challenges of AI/ML based devices on the one hand and to enable the development 

of best practices and appropriate regulatory strategies, in the future. 

2 Methods 

Within this paper, the analysis of the FDA approach proposed in [13] is performed using specific 

reference scenarios from ICU applications, which are particularly taken from [13] itself. The 

focus lies on ML based devices which allow continuous updates of the model according to data 

collected during the lifetime of the device. In this context, SPS and ACP are considered as crucial 

steps which allow an automated validation of the device based on specified measures. In 

particular, the requirements and limitations of such an automated validation are analyzed and 

discussed, including the following topics / questions. 

 Is automated validation reasonable for these cases? What are limitations / potential 

pitfalls of such an approach when applied in the particular clinical context?  

 Which additional risks could apply to AI/ML based SaMD, in general, which go 

beyond the existing discussions in the literature as e.g. presented in [9, 10, 12]?  

 How should such issues be taken into account in the future?  

What could be appropriate measures / best practices to achieve reliability? 

The following exemplary scenarios are used for this purpose.  
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 Base Scenario ICU: ML based Intensive Care Unit (ICU) monitoring system where the 

detection of critical situations (e.g. regarding physiological instability, potential myo-

cardial infarcts or sepsis) is addressed by using ML. Using auditory alarms, the ICU 

staff is informed to initiate appropriate measures to treat the patients in these situations. 

This scenario addresses a ‘critical healthcare situation or condition’ and is considered 

to ‘drive clinical management’ (according to the risk classification used in [13]). 

 Modification “locked”: ICU scenario as presented above, where the release of the 

monitoring system is done according to a locked state of the algorithm. 

 Modification “cont-learn”: ICU scenario as presented above, where the detection of 

alarm situations is continuously improved according to data acquired during daily 

routine, including adaptation of performance to sub-populations and/or characteristics 

of the local environment. In this case, SCS and ACP have to define standard measures 

like success rates of alarms/detection and requirements for the management of data, 

update of the algorithm, and labeling. More details of such requirements are discussed 

later. This scenario was presented as scenario 1A in [13] with minor modifications. 

3 Analysis 

This section provides the basic analysis of the scenarios according to the particular aspects 

addressed in this paper. It addresses the topics automated validation, man-machine interaction, 

explainability, bias effects, and confounding, fairness and non-discrimination as well as 

corrective actions to systematic deficiencies. 

Basic Considerations about Automated Validation  

According to standard regulatory requirements [1, 15, 16], validation is a core step in the 

development and for the release of medical devices. According to [17], a change in performance 

of a device (including an algorithm in a SaMD) as well as a change in particular risks (e.g. new 

risks, but also new risk assessment or new measures) usually triggers a new premarket 

notification (510(k)) for most of the devices which get onto the market in the US. Thus, such 

situations require an FDA review for clearance of the device. For SaMD, this requires to include 

an analytical evaluation, i.e. correct processing of input data to generate accurate, reliable, and 

precise output data. Additionally, a clinical validation as well as the demonstration of a valid cli-

nical association need to be provided. [18] This is intended to show that the outputs of the device 

appropriately work in the clinical environment, i.e. have a valid association regarding the targe-

ted clinical condition and achieve the intended purpose in the context of clinical care. [18] 

Thus, based on the current standards, a device with continuously changing performance usually 

requires a thorough analysis regarding its validity. This is one of the main points, where [13] 

proposes to establish a new approach for the “cont-learn” cases. As already mentioned, SPS and 

ACP basically have to be considered as tools for automated validation in this context. Within 

this new approach, the manual validation step is replaced by an automated process with only 

reduced or even no additional control by a human observer. Thus, it may work as an automated 

of fully automatic, closed loop validation approach. The question is whether this change can be 

considered as an appropriate alternative. In the following, this question is addressed using the 

ICU scenario with a main focus on the “cont-learn” case. Some of the aspects also apply to the 

“locked” cases. But the impact is considered to be higher in the “cont-learn” situation, since the 

validation step has to be performed in an automated fashion. Human oversight, which is usually 

considered important, is not included here during the particular updates.   
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Analysis of Validation Steps  

Within the ICU scenario, the validation step has to ensure that the alarm rates stay on a 

sufficiently high level, regarding standard factors like specificity, sensitivity, area under curve 

(AUC), etc. Basically, these are technical parameters which can be analyzed according to an 

analytical evaluation as discussed above. (see also [18]) This could also be applied to situations, 

where continuous updates are made during the lifecycle of the device, i.e. in the “cont-learn”. 

However, there are some limitations of the approach. On the one hand, it has to be ensured, that 

this analysis is sound and reliable, i.e. it is not compromised according to statistical effects like 

bias or other deficiencies in the data. On the other hand, it has to be ensured that the success rates 

really have a valid clinical association and can be used as a sole criterion for measuring the 

clinical impact. Thus, the relationship between pure success rates and clinical effects has to be 

evaluated thoroughly and there may be some major limitations. 

One major question in the ICU scenario is, whether better success rates really guarantee a higher 

or at least sufficient level of clinical benefit. This is not innately given. For example, a higher 

success rate of the alarms may still have a negative effect when the ICU staff relies more and 

more on the alarms and subsequently reduces attention. Thus, it may be the case that the initiation 

of appropriate treatment steps may be compromised even though the actually occurring alarms 

seem to be more reliable.  

In particular, this may apply in situations where the algorithms are adapted to local settings, like 

in the “cont-learn” scenario. Here, the ML based system is intended to be optimized to sub-

populations in the local environment or to specific treatment preferences at the local site. 

According to habituation effects, the staff’s expectations get aligned to the algorithm’s behavior 

to a certain degree after a period of time. But when the algorithm changes or an employee from 

another hospital or department takes over duties in the local unit, the reliability of the alarms 

may be affected. In these cases, it is not clear whether the expectations are well aligned with the 

current status of the algorithm – either in the positive or negative direction. Since the data updates 

of the device are intended to improve its performance w.r.t. detection rates, it is clear that 

significant effects on user interaction may happen. Under some circumstances, the overall 

outcome in terms of the clinical effect may be impaired.  

Evaluation of such risks have to be addressed during validation. It is questionable whether this 

can be performed by using an automatic validation approach which focuses on alarm rates but 

does not include an assessment of the associated risks. At least a clear relationship between these 

two aspects has to be demonstrated in advance. It is also unclear, whether this could be achieved 

by assessment of pure technical parameters which are defined in advance as required by the SPS 

and ACP. Usually, ML based systems are trained to a specific scenario. They provide a specific 

solution for this particular problem. But they do not have a more general intelligence and 

reasoning about potential risks, which were not under consideration at that point of time. Such a 

more general intelligence can only be provided when using human oversight. 

Consideration of Risks and Man-Machine Interaction  

In general, it is not clear whether technical aspects like alarms lead to valid reactions by the 

users. In technical terms, alarm rates are basically related to the probability of occurrence of 

specific hazardous situations. But they do not address a full assessment of occurrence of harm. 

However, this is pivotal for risk assessment in medical devices, in particular for risks related to 

potential use errors. This is considered to be one of the main reasons why a change in risk para-

meters triggers a new premarket approval in the US according to [17]. Also, the MDR [1] sets 

high requirements to address the final clinical impact and not only technical parameters. 
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Basically, the example emphasizes the importance to consider the interaction between man and 

machine, or in this case, the algorithm and its clinical environment. This is addressed in the 

usability standards for medical devices, e.g. ISO 62366 [19]. For this reason, the ISO 62366 

requires that the final (summative) usability evaluation is performed using the final version of 

the device (in this case, the algorithm) or an equivalent version. This is in conflict with the FDA 

proposal which allows to perform this assessment based on previous versions. At most, a 

predetermined relationship between technical parameters (alarm rates) and clinical effects (in 

particular, use related risks) can be obtained. For usage of ML based devices, it remains crucial 

to consider the interaction between the device and the clinical environment as there usually are 

important interrelationships.  

Comprehensiveness of Included Inputs and Outcomes 

The outcome of an ML based algorithm always depends on the data it gets provided. Whenever 

an input parameter is omitted, which is clinically relevant, the resulting outcome of the ML based 

system is limited. In the presented scenarios, the pure alarm rates may not be the only clinically 

relevant outcomes. Even though, such parameters are usually the main focus regarding the 

quality of algorithms, e.g. in publications about ML based techniques. This is due to the fact, 

that such quality measures are commonly considered the best available objective parameters, 

which allow a comparison of different techniques.  

This even more applies to other ML based techniques which are also very popular in the scientific 

community, like segmentation tasks in medical image analysis. Here the standard quality 

measures are general distance metrics, i.e. differences between segmented areas. [20] They 

usually do not include specific clinical aspects like the accuracy in specific risk areas, e.g. 

important blood vessels or nerves. But such aspects are key factors to ensure the safety of a 

clinical procedure in many applications. Again, only technical parameters are typically in focus. 

The association to the clinical effects is not assessed accordingly. This situation is depicted in 

fig. 2 for the ICU as well as image segmentation cases.    

 

  
Fig. 2. Relationship between technical parameters / analytical evaluation (as usually considered in many 

publications about ML based techniques) on the one hand and potential risks / clinical effects (finally 

relevant for release of medical devices) on the other hand (using ICU and image segmentation scenarios). 

 

Additionally, the validity of an outcome in medical treatments depends on many factors. 

Regarding input data, multiple parameters from a patient’s individual history may be important 

for deciding about a particular diagnosis or treatment. A surgeon usually has access to a 

multitude of data and also side conditions (like socio-economic aspects) which should be 

UR-AI 2020 // 59



included in an individual diagnosis or treatment decision. His general intelligence and 

background knowledge allow him to include a variety of individual aspects, which have to be 

considered for a specific case-based decision. In contrary, ML based algorithms rely on a more 

standardized structure of input data and are only trained for a specific purpose. They lack a more 

general intelligence, which allows them to react in very specific situations. Even more, ML based 

algorithms need to generalize and thus to mask out very specific conditions, which could by fatal 

in some cases.  

In [13], the FDA presents some examples where changes of the inputs in an ML based SaMD 

are included. It is surprising, that the FDA considers some of them as candidates for a continuous 

learning system, which does not need an additional review, when a tailored SPS/ACP is 

available. 

Lack of Explainability and its Impact on Clinical Practice 

Such discrepancies between technical outcomes and clinical effects also apply to situations like 

the ICU scenario, which only informs or drives clinical management. Often users rely on auto-

matically provided decisions, even when they are informed that this only is a proposal. Again, 

this is a matter of man-machine interaction. This gets even worse due to the lack of explainability 

which ML based algorithms typically have. [9, 21] When surgeons or more general users (e.g, 

ICU staff) detect situations which require a diverging treatment because of very specific indi-

vidual conditions, they should overrule the algorithm. But users will often be confused by the 

outcome of the algorithm and do not have a clear idea how they should treat conflicting results 

between the algorithm’s suggestions and their own belief. As long as the ML based decision is 

not transparent to the user, they will not be able to merge these two directions. The IBM Watson 

example, referenced in the introduction shows, that this actually is an issue [11].   

This may be even more serious, when the users (i.e. healthcare professionals) fear litigation 

because they did not trust the algorithm. In a situation, where the algorithm’s outcome finally 

turns out to be true, they may be sued because of this documented deviation. Because of such 

issues, the EU General Data Protection Regulation (GFPR) [22] requires that the users get 

autonomy regarding their decisions and transparency about the mechanisms underlying the 

algorithm’s outcome. [23] This may be less relevant for the patients, who usually have only limi-

ted medical knowledge. They will probably also not understand the medical decisions in conven-

tional cases. But it is highly relevant for responsible healthcare professionals. They require to 

get basic insights how the decision emerged, as they finally are in charge of the treatment. This 

demonstrates that methods regarding the explainability of ML based techniques are important. 

Fortunately, this currently gets a very active field. [21, 24] This need for explainability applies 

to locked algorithms as well as situations where continuous learning is applied. 

Bias Effects due to Imbalance of Data 

Based on their own data-driven nature, ML based techniques highly depend on a very high 

quality of data which are provided for learning and validation. In particular, this is important for 

the analytical evaluation of the ML algorithms. One of the major aspects are bias effects due to 

unbalanced input data. For example, in [25] a substantially different detection rate between white 

and colored people was recognized due to unbalanced data. Beside ethical considerations, this 

demonstrates dependencies of the outcome quality on sub-populations, which may be critical in 

some cases. Even though, the FDA proposal [13] currently does not consequently include 

specific requirements for assessing bias factors or imbalance of data.  

However, high quality requirements for data management are crucial for ML based devices. In 

particular, this applies to the ICU “cont-learn” cases. There have to be very specific protocols 
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that guarantee that new data and updates of the algorithms are highly reliable w.r.t. bias effects. 

Most of the currently used ML based algorithms fall under the category of supervised learning. 

Thus, they require accurate and clinically sound labeling of the data. During the data collection, 

it has to be ensured how this labeling is performed and how the data can be fed back into the 

system in a “cont-learn” scenario. Additionally, the data needs to stay balanced – whatever this 

means in a situation where adaptions to sub-populations and/or local environments are intended 

for optimization. It is unclear, whether and how this could be achieved by staff who is only 

operating with the system but possibly does not know potential algorithmic pitfalls.  

In the ICU scenario, many data points probably need to be recorded by the system itself. Thus, 

a precise and reliable recording scheme has to be established which automatically avoids 

imbalance of data on the one hand and fusion with manual labelings on the other hand. Basically, 

the SPS and ACP (proposed in [13]) are tools to achieve this. The question is whether this is 

possible in a reliable fashion using automated processes. A complete closed loop validation 

approach seems to be questionable, especially when the assessment of clinical impact has to be 

included. Thus, the integration of humans including adequate healthcare professionals as well as 

ML/AI experts with sufficient statistical knowledge seems reasonable. At least, bias assessment 

steps should be included. As already mentioned, this is not addressed in [13] in a dedicated way.  

Confounding Factors and Dependence on Clinical Environment  

Further on, the outcomes may be compromised by side effects in the data. It may be the case, 

that the main reason for a specific outcome of the algorithm is not a relevant clinical parameter 

but a specific data artifact, i.e. some confounding factor. In the ICU case, it could be the case, 

that the ICU staff reacts early to a potentially critical situation and e.g. gives specific medication 

in advance to prevent upcoming problems. The physiological reaction of the patient can then be 

visible in the data as some kind of artifact. During its learning phase, the algorithm may 

recognize the critical situation not based on a deeper clinical reason, but on detecting the 

physiological reaction pattern. This may cause serious problems as shown subsequently. In the 

presented scenario, the definition of clinical situation and the pattern can be deeply coupled by 

design, since the labeling of the data by the ICU staff and the administration of the medication 

will probably be done in combination at the particular site. This may increase the probability of 

such effects. 

Usually, confounding factors are hard to determine. Even when they can be detected, they are 

hard to be communicated and managed in an appropriate way. How should healthcare professio-

nals react, when they get such potentially misleading information (see discussion about liability). 

This further limits the explanatory power of ML based systems. When confounders are not 

detected, they may have unpredictable outcomes w.r.t. the clinical effects. For example, consider 

the following case. In the ICU scenario, an ML based algorithm gets trained in a way that it 

basically detects the medication artifact as described above during the learning phase. In the next 

step, this algorithm is used in clinical practice and the ICU staff relies on the outcome of the 

algorithm. Then, on the one hand, the medication artifact is not visible unless the ICU staff 

administers the medication. On the other hand, the algorithm does not recognize the pattern and 

thus does not provide an alarm. Subsequently, the ICU staff does no act appropriately to manage 

the critical situation.  

In particular, such confounders may be more likely in situations where a strong dependence 

between the outcome of the algorithm and the clinical treatment exists. Further examples of such 

effects were discussed in [7] for ICU scenarios. The occurrence of confounders may be a bit less 

probable in pure diagnostic cases without influence of the diagnostic task onto the generation of 

data. But even here, such confounding factors may occur. The discussion in [10] provided 
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examples where confounders may occur in diagnostic cases e.g. because of rulers placed for 

measurements on radiographs. In most of the publications about ML based techniques, such side 

effects are not discussed (or only in a limited fashion). In many papers, the main focus is the 

technical evaluation and not the clinical environment and the interrelation between technical 

parameters and clinical effects. 

Fairness and Non-Discrimination 

Additional important aspects which are amply discussed in the context of AI/ML based systems 

are discrimination and fairness (see e.g. [10]). In particular, the EU puts a high priority of their 

future AI/ML strategy on fairness requirements [9]. Fairness is often closely related to bias 

effects. But it goes beyond to more general ethical questions, e.g. regarding the natural tendency 

of ML based systems to favor specific subgroups. For example, the ICU scenario “cont-learn” is 

intended to optimize w.r.t. to specifics of sub-populations and local characteristics, i.e. it tries to 

make the outcome better for specific groups. Based on such optimization, other groups (e.g. 

minorities, underrepresented groups) which are not well represented may be discriminated in 

some sense. This is not a statistical but a systematic effect. 

Superiority of a medical device for a specific subgroup (e.g. gender, social environment, etc.) is 

not uncommon. For example, some diagnosis steps, implants, or treatments achieve deviating 

success rates when applied to women in comparison to men. This also applies to differences 

between adults and children. When assessing bias in clinical outcome in ML based devices, it 

will probably often be unclear whether this is due to imbalance of data or a true clinical difference 

between the groups. Does an ML based algorithm has to adjust the treatment of a subgroup to a 

higher level, e.g. a better medication, to achieve comparable results, when the analysis recog-

nized worse results for this subgroup? Another example could be a situation where the particular 

group does not have the financial capabilities to afford the high-level treatment. This could e.g. 

be the case in a developing country or in subgroups with a lower insurance level. In these cases, 

the inclusion of socio-economical parameters into the analysis seems to be unavoidable. 

Subsequently, this compromises the notion of fairness as basic principle in some way. 

This is nothing genuine to ML based devices. But in the case of ML based systems with a high 

degree of automation, the responsibility for the individual treatment decision more and more 

shifts from the health care professional to the device. It is implicitly defined in the ML algorithm. 

In comparison to human reasoning, which allows some weaknesses in terms of individual 

adjustments of general rules, ML based algorithms are rather deterministic / unique in their 

outcome. For a fixed input, they have one dedicated outcome (when we neglect statistical 

algorithms which may allow minor deviations). Differences of opinions and room for individual 

decisions are main aspects of ethics. Thus, it remains unclear how fairness can be defined and 

implemented at all when considering ML based systems. This is even more challenging as socio-

economical aspects (even more than clinical aspects) are usually not included in the data and 

analysis of ML based techniques in medicine. Additionally, they are hard to assess and 

implement in a fair way, especially when using automated validation processes. 

Corrective Actions regarding Systematic Deficiencies 

Another disadvantage of ML based devices is the limited opportunities to fix systematic 

deficiencies in the outcome of the algorithm. Let us assume that during the lifetime of the ICU 

monitoring system a systematic deviation of the intended outcome was detected, e.g. in the 

context of post-market surveillance or due to an increased number of serious adverse events. 

According to standard rules, a proper preventive respectively corrective action has to be taken 

by the manufacturer. In conventional software devices, the error simple should be eliminated, 
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i.e. some sort of bug fixing has to be performed. For ML based devices it is less clear, how bug 

fixing should work especially when the systematic deficiency is deeply hidden in the data and/or 

ML model. In these cases, there usually is no clear reason for the deficiency. Subsequently, the 

deficiency cannot be resolved in a straightforward way using standard bug fixing. There is no 

dedicated route to find the deeper reasons and to perform changes which could cure the 

deficiencies, e.g. by providing additional data or changing the ML model. Even more, other side 

effects may easily occur, when data and model are changed manually by intent to fix the issue.    

4 Discussion and Outlook 

In summary, there are many open questions, which are not yet clarified. There still is little 

experience how ML based systems work in clinical practice and which concrete risks may occur. 

Thus, the FDA’s commitment to foster the discussion about ML based SaMD is necessary and 

appreciated by many stakeholders as the feedback docket [26] for [13] shows. However, it is a 

bit surprising that the FDA proposes to substantially reduce its very high standards in [13] at this 

point of time. In particular, it is questionable whether an adequate validation can be achieved by 

using a fully automatic approach as proposed in [13]. ML based devices are usually optimized 

according to very specific goals. They can only account for the specific conditions that are 

reflected in the data and the used optimization / quality criteria. They do not include side 

conditions and a more general reasoning about potential risks in a complex environment. But 

this is important for medical devices. 

For this reason, a more deliberate path would be suited, from the author’s perspective. In a first 

step, more experience should be gained w.r.t. to the use of ML based devices in clinical practice. 

Thus, continuous learning should not be a first hand option. First, it should be demonstrated that 

a device works in clinical practice before a continuous learning approach should be possible. 

This could also be justified from a regulatory point-of-view. The automated validation process 

itself should be considered as a feature of the device. It should be considered as part of the design 

transfer which enables safe use of the device during its lifecycle. As part of the design transfer, 

it should be validated itself. Thus, it has to be demonstrated that this automated validation 

process, e.g. in terms of the SPS and ACP, works in a real clinical environment. Ideally, this 

would have been demonstrated during the application of the device in clinical practice. 

Thus, one reasonable approach for a regulatory strategy could be to reduce or prohibit the options 

for enabling automatic validation in a first release / clearance of the device. During the lifetime, 

direct clinical data could be acquired to demonstrate a better insight into the reliability and 

limitations of the automatic validation / continuous learning approach. In particular, the relation 

between technical parameters and clinical effects could be assessed on a broader and more stable 

basis. Based on this evidence in real clinical environments, the automated validation feature 

could then be cleared in a second round. 

Otherwise, the validity of the automated validation approach would have to be demonstrated in 

a comprehensive setting during the development phase. In principle, this is possible when enough 

data is available which truly reflects a comprehensive set of situations. As discussed in this paper, 

there are many aspects which do not render this approach impossible but very challenging. In 

particular, this applies to the clinical effects and the interdependency between the users and 

clinical environment on the one hand and the device, including the ML algorithm, data 

management, etc., on the other hand. This also includes not only variation in the status and needs 

of the individual patient but also the local clinical environment and potentially also the 

socioeconomic setting.  
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Following a consequent process validation approach, it would have to be demonstrated that the 

algorithm reacts in a valid and predictable way no matter which training data have been provided, 

which environment have to be addressed, and which local adjustments have been applied. This 

also needs to include deficient data and inputs in some way. In [20], it has been shown that the 

variation of outcomes can be substantial, even w.r.t. rather simple technical parameters. In [20], 

this was analyzed for scientific contests (“challenges”) where renowned scientific groups 

supervised the quality of the submitted ML algorithms. This demonstrates the challenges 

validation steps for ML based systems still include, even w.r.t. technical evaluation. 

For these reasons, it seems adequate to pursue the regulatory strategy in a more deliberate way. 

This includes the restriction of the “cont-learn” cases as proposed. This also includes a better 

classification scheme, where automated or fully automatic validation is possible. Currently, the 

proposal in [13] does not provide clear rules when continuous learning is allowed. It does not 

really address a dedicated risk-based approach that defines which options and limitations are 

applicable. For some options, like the change of the inputs, it should be reviewed, whether 

automatic validation is a natural option. Additionally, the dependency between technical 

parameters and clinical effects as well as risks should get more attention. In particular, the grade 

of interrelationship between the clinical actions and the learning task should be considered. 

In general, the discussions about ML based medical devices are very important. These techniques 

provide valuable opportunities for improvements in fields like medical technologies, where 

evidence based on high quality data is crucial. This applies to the overall development of 

medicine as well as to the development of sophisticated ML based medical devices. This also 

includes the assessment of treatment options and success of particular devices during their 

lifetime. Data-driven strategies will be important for ensuring high-level standards in the future. 

They may also strengthen regulatory oversight in the long term by amplifying the necessity of 

post-market activities. This seems to be one of the promises the FDA envisions according to 

their concepts of “total product lifecycle quality (TPLC)” and “organizational excellence” [13]. 

Also, the MDR strengthens the requirements for data-driven strategies in the pre- as well as post-

market phase. But it should not shift the priorities for a basically proven-quality-in-advance (ex-

ante) to a primarily ex-post regulation, which boils down to a trial-and-error oriented approach 

in the extreme. Thus, we should aim at a good compromise between pushing these valuable and 

innovative options on the one hand and potential challenges and deficiencies on the other hand. 
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Abstract. Neurosurgical procedures are associated with great challenges for the
surgeon since a high degree of precision is required. Operations are performed
within a limited space and often concealed structures are not visible to the sur-
geon. A system is proposed that integrates augmented reality into a digital oper-
ating room. The basis for this is an understanding of the scene and the integration
into the surgical workflow. In a first step a two-stage process is implemented to
detect the patient on the operating table with high precision. Further a solution is
presented to semantically segment the surgical scene to detect and track medical
instruments. For better understanding of the situation in the operation room the
medical staff is tracked with OpenPose. These solutions build the base for a pre-
cise and robust integration of augmented reality into the digital operating room.

Keywords: Computer Assisted Surgery, Augmented Reality, Neurosurgical In-
terventions, Digital OR, Ventricular Puncture.

1 Introduction

Computer-assisted technologies in medical interventions are intended to support the sur-
geon during treatment and improve the outcome for the patient. One possibility is to
augment reality with additional information that would otherwise not be perceptible to
the surgeon. In medical applications, it is particularly important that demanding spatial
and temporal conditions are adhered to. Challenges in augmenting the operating room
are the correct placement of holograms in the real world, and thus, the precise registra-
tion of multiple coordinate frames to each other, the exact scaling of holograms, and the
performance capacity of processing and rendering systems.

In general, two different scenarios can be distinguished. First, applications exist, in
which a placement of holograms with an accuracy of 1 cm and above are sufficient. These
are mainly applications where a person needs a three-dimensional view of data. An ex-
ample in the medical field may be the visualization of patient data, e.g. to understand
and analyse the anatomy of a patient, for diagnosis or surgical planning. The correct
visualization of these data can be of great benefit to the surgeon. Often only 2D patient
data is available, such as CT or MRI scans. The availability of 3D representations depend
strongly on the field of application. In neurosurgery 3D views are available but often not
extensively utilized due to their limited informative value. Additionally computer mon-
itors are a big limitation, because the data can not be visualized in real world scale.
Further application areas are the translation of known user interfaces into augmented
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Fig. 1. A neurosurgeon performing a ventricular puncture wearing a HoloLens.

reality (AR) space. The benefit here is that a surgeon refrains from touching anything,
but can interact with the interface in space using hand or voice gestures. Applications
visualizing patient data, such as CT scans, only require a rough positioning of the image
or holograms in the operation room (OR). Thus, the surgeon can conveniently place the
application freely in space. The main requirement is then to keep the holograms in a
constant position. Therefore, the internal tracking of the AR device is sufficient to hold
the holograms at a fixed position in space. The second scenario covers all applications, in
which an exact registration of holograms to the real world is required, in particular with
a precision below 1 cm. These scenarios are more demanding, especially when holograms
must be placed precisely over real patient anatomy. To achieve this, patient tracking is
essential to determine position and to follow patient movements. The system therefore
needs to track the patient and adjust the visualization to the current situation. Further-
more, it is necessary to track and augment surgical instruments and other objects in the
operating room. The augmentation needs to be visualized at the correct spatial position
and time constraints need to be fulfilled. Therefore, the AR system needs to be embedded
into the surgical workflow and react to it. To achieve these goals modern state of the art
machine learning algorithms are required. However, the computing power on available
AR devices is often not yet sufficient for sophisticated machine learning algorithms. One
way to overcome this shortcoming is the integration of the AR system into a distributed
system with higher capabilities, such as the digital operating theatre OP:Sense (see Fig.
2).

In this work an augmented reality system HoloMed [4] (see Fig. 1) is integrated into
the surgical research platform for robot assisted surgery OP:Sense [5]. The objective is
to enable high-quality and patient-safe neurosurgical procedures in order to increase the
surgical outcome by providing surgeons with an assistance system that supports them
in cognitively demanding operations. The physician’s perception limits are extended by
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the AR system, which bases on supporting intelligent machine learning algorithms. AR
glasses allow the neurosurgeon to perceive the internal structures of the patient’s brain.
The complete system is demonstrated by applying this methodology to the ventricular
puncture of the human brain, one of the most frequently performed procedures in neu-
rosurgery. The ventricle system has an elongated shape with a width of 1-2 cm and is
located in a depth of 4 cm inside the human head. Patient models are generated fast
(< 2s) from CT-data [3], which are superimposed over the patient during operation and
serve as a navigation aid for the surgeon. In this work the expanded system architecture is
presented to overcome some limitations of the original system where all information were
processed on the Microsoft HoloLens, which lead to performance deficits. To overcome
these shortcomings the HoloMed project was integrated into OP:Sense for additional
sensing and computing power.

2 Material and Methods

To achieve integration of AR into the operation room and the surgical workflows, the
patient, the instruments and the medical staff need to be tracked. To track the patient, a
marker system is fixated on the patient head and registration from the marker system to
the patient is determined. A two-stage process was implemented for this purpose. First
the rough position of the patient’s head is determined on the OR table by applying a
YOLO v3 net to reduce the search space. Then a robot with a mounted RGB-D sensor
is used to scan the acquired area and build a point cloud of the same. To determine the
patient’s head in space as precisely as possible a two-step surface matching approach
is utilized. During recording, the markers are also tracked. With known position of the
patient and the markers, the registration matrix can be calculated. For the ventricular
puncture a solution is proposed to track the puncture catheter to determine the depth of
insertion into the human brain. By tracking the medical staff the system is able to react
to the current situation, e.g. if an instrument is passed. In the following the solutions are
described in detail.

2.1 Experimental Setup

Our digital operating room OP:Sense (illustrated in Fig. 2a) consists of an OR table with
two robots attached to it, a Kuka LWR4 and a Franka Panda lightweight robot. Several
sensors are integrated into the setup on the ceiling rack: an ARTRRACK 2 system to track
retroreflective markers consisting of six IR cameras and four Microsoft Kinect sensors
(shown in Fig. 2b). Any objects can be tagged with markers to track them, provided that
marker-to-instrument registration is available. Robot and operating table can be tracked
in the room via ART markers. The Microsoft Kinect sensors provide a RGB-D stream of
the operation area. Intel RealSense D415 and D435 cameras can additionally be placed
inside the OR or can be mounted on the robots, to capture a defined near-field area. A
patient phantom head from Synbone and a custom-build phantom skull were used during
experiments. A Microsoft HoloLens is used to visualize AR to the surgeon. It employs the
Unity 3D graphics engine to visualize the holographic scene. Patient tracking is provided
through two different marker systems: 1) the Aruco library in combination with OpenCV
and 2) the Vuforia library. OP:Sense is based on the Robot Operating System (ROS),
which is a middleware for robotic platforms, consisting of a set of software libraries and
tools. Core components are so-called nodes connecting all system components with each
other.
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(a) (b)

Fig. 2. a) OP:Sense system setup. b) Sensor setup with six ARTTRACK 2 IR cameras (red 1)
and four Microsoft Kinect sensors (blue 2).

2.2 Patient Detection

To detect the patient’s head, the coarse position is first determined with the YOLO v3
CNN [6], performed on the Kinect RGB image streams. The position in 3D is determined
through the depth stream of the sensors. The OR table and the robots are tracked with
retroreflective markers by the ARTTRACK system. This step reduces the spatial search
area for fine adjustment. The Franka Panda has an attached Intel RealSense RGB-D
camera as depicted in Fig. 3.

Fig. 3. Franka Panda with attached RGB-D sensor.

The precise determination of the position is performed on the depth data with surface
matching. The robot scans the area of the coarsely determined position of the patient’s
head. A combined surface matching approach with feature-based and ICP matching was
implemented. The process to perform the surface matching is depicted in Fig. 4. In clinical
reality, a CT scan of the patient head is always performed prior to a ventricular puncture
for diagnosis, such that we can safely assume the availability of CT data. A process
to segment the patient models from CT data was proposed by Kunz et al. in [3]. The
algorithm processes the CT data extremely fast in under two seconds. The data format
is ’.nrrd’, a volume model format, which can easily be converted into surface models or
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point clouds. The point cloud of the patient’s head CT scan is the reference model that
needs to be found in OR space. The second point cloud is recorded from the RealSense
depth stream mounted on the Panda robot by scanning the previously determined rough
position of the patient head. All points are recorded in world coordinate space. The

Fig. 4. Surface matching process.

search space is further restricted with a segmentation step by filtering out points that
are located on the OR table. Additionally, manual changes can be made by the surgeon.
In a performance optimization, the resolution of the point clouds is reduced to decrease
processing time without loosing too much accuracy. The normals of both point clouds
generated from CT data and from the recorded RealSense depth stream are subsequently
calculated and harmonised. During this step, the harmonisation is especially important
as the normals are often misaligned. This misalignment occurs because the CT data is a
combination of several individual scans. For alignment of all normals, a point inside the
patient’s head is chosen manually as a reference point, followed by orienting all normals
in the direction of this point and subsequently inverting all normals to the outside of the
head (see Fig. 5).

After the preprocessing steps, the first surface fitting step is executed. It is based on
the Initial alignment algorithm proposed by Rusu et al. [8]. An implementation within
the point cloud library (PCL) is used. Therefore fast point feature histograms need to
be calculated as a preprocessing step. In the last step an iterative closest point (ICP)
algorithm is used to refine the surface matching result. After the two point clouds have
been aligned to each other the inverse transformation matrix can be calculated to get
the correct transformation from marker system to patient model coordinate space.

2.3 Catheter Tracking

As outlined in Fig. 6, catheter tracking was implemented based on semantic segmentation
using a Full-Resolution Residual Network (FRRN) [7]. After the semantic segmentation
of the RGB stream of the Kinect cameras, the image is fused with the depth stream
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Fig. 5. Before (left) and after (right) harmonisation of wrongly oriented normals.

to determine the voxels in the point cloud belonging to the catheter. As a further step
a density based clustering approach [2] is performed on the chosen voxels. This is due
to noise especially on the edges of the instrument voxels in the point cloud. Based on
the found clusters an estimation of the three dimensional structure of the catheter is
performed. For this purpose, a narrow cylinder with variable length is constructed. The
length is changed accordingly to the semantic segmentation and the clustered voxels of
the point cloud. The approach is applicable to identify a variety of instruments.

Fig. 6. Process to track the catheter using a RGB-D sensor.

2.4 Tracking of Medical Staff

The OpenPose [1] library is used to track key points on the bodies of the medical staff.
Available ROS nodes have been modified to integrate OpenPose in the OP:Sense ROS
environment. The architecture is outlined in Fig. 7.

3 Results

In this chapter the results of the patient, catheter and medical staff tracking are de-
scribed. The approach to find the coarse position of a patient’s head was performed on a
phantom head placed on the OR table within OP:Sense. Multiple scenarios with chang-
ing illumination and occlusion conditions were recorded. The results are depicted in Fig.
8 and the evaluation results are depicted in Table 1.
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Fig. 7. Integration of the OpenPose library into the ROS environment of OP:Sense.

Fig. 8. Coarse determination of the patient’s head on the OR table with YOLO v3.

Table 1. Evaluation results for the phantom search with YOLO v3.

Precision Recall F1-Score average IoU mAP

Normal OR conditions 92% 99% 95% 67.59% 90.35%
Occlusion 99% 93% 96% 75.77% 90.86%
Strong Illumination 62% 66% 64% 41.01% 62.23%
Illumination and Occlusion 65% 51% 57% 41.83% 45.62%

Precision detection of the patient was performed with a two-stage surface matching
approach. Different point cloud resolutions were tested with regard to runtime behaviour.
Voxel grid edge sizes of 6, 4 and 3 mm have been tested, with a higher edge size cor-
responding to a smaller point cloud. The matching results of the two point clouds were
analyzed manually. An average accuracy of 4.7 mm was found with an accuracy range
between 3.0 and 7.0 mm.

In the first stage of the surface matching, the two point clouds are coarsely aligned as
depicted in Fig. 9. In the second step ICP is used for fine adjustment. A two-stage process
was implemented as ICP requires a good initial alignment of the two point clouds.
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Table 2. Evaluation results of the two-step surface matching.

Voxel Grid
Size (mm)

Points
Points after Adjustment

of Resolution
Processing Time

(in minutes)
Mean Accuracy

(mm)

6 17418 1293 1.98 6.45
4 17418 2706 7.57 3.52
3 17418 4405 17.87 4.12
4 47530 2860 7.53 3.94
4 49917 2774 7.71 3.0
4 30521 3035 8,09 7.0

Fig. 9. Results of the two-stage surface matching. Left: After Initial Alignment, Right: After
ICP.

For catheter tracking a precision of the semantic segmentation between 47% and 84%
is reached (see Table 3). Tracking of instruments, especially neurosurgical catheters, are
challenging due to their thin structure and non-rigid shape. Detailed results on catheter
tracking have been presented in [7].

Table 3. Evaluation results for semantic segmentation [7].

Dataset
Normal

conditions 1
Normal

conditions 2
Catheter
horizontal

Catheter
vertical

Catheter
diagonal

Bright
Bright,
patient
covered

Precision 84.1% 64.0% 77.1% 47.7% 81.0% 59.0% 72.9%
Recall 58.7% 61.9% 51.2% 19.2% 31.0% 15.4% 43.1%

The 3D estimation of the catheter is shown in Fig. 10. The catheter was moved in
front of the camera and the 3D reconstruction was recorded simultaneously. Over a long
period of the recording over 90% of the catheter are tracked correctly. In some situations
this drops to under 50% or lower.
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Fig. 10. Results of the 3D estimation of the catheter.

The tracking of medical personnel is shown in Fig. 11. The different body parts and
joint positions are determined, e.g. the head, eyes, shoulders, elbows, etc. The library
yielded very good results as described in [1]. We reached a performance of 21 frames per
second on a workstation (Intel i7-9700k, GeForce 1080 Ti) processing 1 stream.

Fig. 11. Results of the medical staff tracking.
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4 Discussion

As shown in the evaluation, our approach succeeds in detecting the patient in an auto-
mated two-stage process with an accuracy between 3 and 7 mm. The coarse position is
determined by using a YOLO v3 net. The results under normal OR conditions are very
satisfying. The solution performance drops strongly under bright illumination conditions.
This is due to large flares that occur on the phantom as it is made of plastic or silicone.
However, these effects do not occur on human skin. The advantage of our system is that
the detection is performed on all four Kinect RGB streams enable different views on the
operation area. Unfavourable illumination conditions normally don’t occur on all of these
streams. Therefore a robust detection is still possible. In the future the datasets will be
expanded with samples with strong illumination conditions.

The following surface matching of the head yields good results and a robust and pre-
cise detection of the patient. Most important is a good preprocessing of the CT data and
the recorded point cloud of the search area, as described in the methods. The algorithm
does not manage to find a result if there are larger holes in the point clouds or if the
normals are not calculated correctly. Additionally, challenges that have to be considered
include skin deformities and noisy CT data. The silicone skin is not fixed to the skull
(as human skin is), which leads to changes in position, some of which are greater than
1 cm. Also the processing time of 7 minutes is quite long and must be optimized in the
future. The processing time may be shortened by reducing the size of the point clouds.
However, in this case the matching results may also become worse.

Catheter tracking [7] yielded good results, despite the challenging task of segmenting a
very thin ( 2.5 mm) and deformable object. Additionally, a 3D estimation of the catheter
was implemented. The results showed that in many cases over 90% of the catheter can be
estimated correctly. However, these results strongly depend on the orientation and the
quality of the depth stream. Using higher quality sensors could improve the detection
results.

For tracking of the medical staff OpenPose as a ready-to-use people detection algo-
rithm was used and integrated into ROS. The library produces very good results, despite
medical staff wearing surgical clothing.

5 Conclusion

In this work the integration of augmented reality into the digital operating room OP:Sense
is demonstrated. This makes it possible to expand the capabilities of current AR glasses.
The system can determine the precise patient’s position by implementing a two-stage
process. First a YOLO v3 net is used to coarsly detect the patient to reduce the search
area. In a second subsequent step a two-stage surface matching process is implemented
for refined detection. This approach allows for precise location of the patient’s head for
later tracking.

Further, a FRNN-based solution to track the surgical instruments in the OR was im-
plemented and demonstrated on a thin neurosurgical catheter for ventricular punctures.
Additionally, OpenPose was integrated into the digital OR to track the surgical person-
nel. The presented solution will enable the system to react to the current situation in the
operating room and is the base for an integration into the surgical workflow.
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Abstract. In this work a scene-adaptive approach for disparity estimation in
depth sensor networks is presented. Our approach makes use of a priori scene
knowledge to improve the low-level 3D data acquisition. We fit an articulated
shape model to the given 3D data and leverage the resulting high-level scene
information to make the estimation of disparities more robust to local ambiguities.
We present early qualitative results to show the applicability of our method.

Keywords: scene-adaptive sensor networks, guided stereo matching, context-
ware disparity estimation, articulated human shape models, stereo matching.

1 Introduction

Due to the emergence of commodity depth sensors many classical computer vision tasks
are employed on networks of multiple depth sensors e.g. people detection [1] or full-body
motion tracking [2]. Existing methods approach these applications using a sequential
processing pipeline where the depth estimation and inference are performed on each
sensor separately and the information is fused in a post-processing step. In previous
work [3] we introduce a scene-adaptive optimization schema, which aims to leverage
the accumulated scene context to improve perception as well as post-processing vision
algorithms (see Fig. 1). In this work we present a proof-of-concept implementation of

Fig. 1: Scene-Adaptive optimization introduced by [3].

the scene-adaptive optimization methods proposed in [3] for the specific task of stereo-
matching in a depth sensor network. We propose to improve the 3D data acquisition step
with the help of an articulated shape model, which is fitted to the acquired depth data.
In particular, we use the known camera calibration and the estimated 3D shape model
to resolve disparity ambiguities that arise from repeating patterns in a stereo image pair.
The applicability of our approach can be shown by preliminary qualitative results.
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(a) Scan (b) Shape model (c) Shoulder joints

Fig. 2: Laser scan (a), articulated shape model (b) and corresponding shoulder joints (c).

2 Related Work

In previous work [3] we introduce a general framework for scene-adaptive optimization
of depth sensor networks. It is suggested to exploit inferred scene context by the sensor
network to improve the perception and post-processing algorithms themselves. In this
work we apply the proposed ideas in [3] to the process of stereo disparity estimation, also
referred to as stereo matching.

While stereo matching has been studied for decades in the computer vision literature
[4, 5] it is still a challenging problem and an active area of research. Stereo matching
approaches can be categorized into two main categories, local and global methods. While
local methods, such as block matching [6], obtain a disparity estimation by finding the
best matching point on the corresponding scan line by comparing local image regions,
global methods formulate the problem of disparity estimation as a global energy mini-
mization problem [7]. Local methods lead to highly efficient real-time capable algorithms,
however, they suffer from local disparity ambiguities. In contrast, global approaches are
able to resolve local ambiguities and therefore provide high-quality disparity estima-
tions. But they are in general very time consuming and without further simplifications
not suitable for real-time applications.

The semi-global matching (SGM) introduced by Hirschmuller [8] aggregates many
feasible local 1D smoothness constraints to approximate global disparity smoothness
regularization. SGM and its modifications are still offering a remarkable trade-off between
the quality of the disparity estimation and the run-time performance.

More recent work from Poggi et al. [9] focuses on improving the stereo matching by
taking additional high-quality sources (e.g. LiDAR) into account. They propose to lever-
age sparse reliable depth measurements to improve dense stereo matching. The sparse re-
liable depth measurements act as a prior to the dense disparity estimation. The proposed
approach can be used to improve more recent end-to-end deep learning architectures [10,
11], as well as classical stereo approaches like SGM.

This work is inspired by [9], however, our approach does not rely on an additional
LiDAR sensor but leverages a priori scene knowledge in terms of an articulated shape
model instead to improve the stereo matching process.

3 Approach

3.1 Experimental Setup

We set up four stereo depth sensors with overlapping fields of view. The sensors are extrin-
sically calibrated in advance, thus their pose with respect to a world coordinates system

UR-AI 2020 // 80



is known. The stereo sensors are pointed at a mannequin and capture eight greyscale
images (one image pair for each stereo sensor, the left image of each pair is depicted in
Fig. 3a). For our experiments we use a high-quality laser scan of the mannequin as ground
truth. We assume that the proposed algorithm has access to an existing shape model that
can express the observed geometry of the scene in some capacity. In our experimental
setup, we assume a shape model of a mannequin with two articulated shoulders and a
slightly different shape in the belly area of the mannequin (see Fig. 2). In the remaining
section we use the provided shape model to improve the depth data generation of the
sensor network.

3.2 Semi-global Block Matching

First, we estimate the disparity values of each of the four stereo sensors with SGM
without using the human shape model. Let p denote a pixel and q denote an adjacent
pixel. Let d denote a disparity map and dp,dq denote the disparity at pixel location p
and q. Let P denote the set of all pixels and N the set of all adjacent pixels. Then the
SGM cost function can be defined as

E(d) =
∑
p∈P

D(p, dp) +
∑

(p,q)∈N

R(p, dp, q, dq), (1)

where D(p, dp) denotes the matching term (here the sum of absolute differences in a 7×7
neighborhood) which assigns a matching cost to the assignment of disparity dp to pixel
p and R(p, dp, q, dq) penalizes disparity discontinuities between adjacent pixels p and q.
In SGM the objective given in (1) is minimized with dynamic programming, leading to
the resulting disparity map

d̄ = arg min
d

E(d). (2)

As input for the shape model fitting we apply SGM on all four stereo pairs leading to
four disparity maps as depicted in Fig. 4a.

3.3 Shape Model Fitting

To be able to exploit the articulated shape model for stereo matching we initial need to
fit the model to the 3D data obtained by classical SGM as described in 3.2. To be more
robust to outliers we do only use disparity values from pixels with high contrast and
transform them into 3D point clouds. Since we assume that the relative camera poses are
known, it is straight forward to merge the resulting point clouds in one world coordinate
system. Finally the shape model is fitted to the merged point cloud by optimizing over the
shape model parameters, namely the pose of the model and the rotation of the shoulder
joints. We use an articulated mannequin shape model in this work as a proxy for an
articulated human shape model (e.g. [2]) as proof-of-concept and plan to transfer the
proposed approach on real humans in future work.

3.4 Synthetic Disparity Maps

Once the model parameters of the shape model are obtained we can reproject the model
fit to each sensor view by making use of the known projection matrices. Fig. 3b shows the
rendered wireframe mesh of the fitted model as an overlay on the camera images. For our
guided stereo matching approach we then need the synthetic disparity map which can
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be computed from the synthetic depth maps (a byproduct of 3D rendering). We denote
the synthetic disparity image by dsynth. One synthetic disparity image is created for each
stereo sensor, see Fig. 4b.

3.5 Model-based Guided Stereo Matching

In the final step we exploit the existing shape model fit, in particular the synthetic
disparity image dsynth of each stereo sensor and combine it with SGM (inspired by guided
stereo matching [9]). Our augmented objective is defined as

E′(d) =
∑
p∈P

D′(p, dp) +
∑

(p,q)∈N

R(p, dp, q, dq), (3)

with

D′(p, dp) =

{
D(p, dp) if |dsynthp − dp| ≤ 3

∞ else.
(4)

The introduced objective is very similar to SGM and can be minimized in a similar fashion
leading to the final disparity estimation in our scene-adaptive depth sensor network

d̂ = arg min
d

E′(d). (5)

To summarize our approach, we exploit an articulated shape model fit to enhance SGM
with minor adjustments.
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Fig. 3: Left camera images (a) and fitted shape model projected on camera images (b).
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Fig. 4: Comparison of obtained disparity maps for all sensor views.
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4 Qualitative Evaluation

To show the applicability of our approach we present preliminary qualitative results. The
results are depicted in Fig. 4. Using SGM without exploiting the provided articulated
shape model leads to reasonable results, but the disparity map is very noisy and no clean
silhouette of the mannequin is extracted (see Fig. 4a). Fitting our articulated shape
model to the data leads to clean synthetic disparity maps as shown in Fig. 4c, with a
clean silhouette. In the belly area the synthetic model disparity map (Fig. 4b) does not
agree with the ground truth (Fig. 4d). The articulated shape model is not general enough
to explain the recorded scene faithfully. Using the guided stereo matching approach, we
construct a much cleaner disparity map than SGM. In addition, the approach takes the
current sensor data into account and exploits an existing articulated shape model.

5 Conclusion

In this work we have proposed a method for scene-adaptive disparity estimation in depth
sensor networks. Our main contribution is the exploitation of a fitted human shape model
to make the estimation of disparities more robust to local ambiguities. Our early results
indicate that our method can lead to more robust and accurate results compared to
classical SGM. Future work will focus on a quantitative evaluation as well as incorporating
sophisticated statistical human shape models into our approach.
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Abstract. Workpieces for dedicated purposes must be composed of materials
which have certain properties. The latter are determined by the compositional
structure of the material. In this paper, we present the scientific approach of
our current DFG funded project Tailored material properties through microstruc-
tural optimization: Machine Learning Methods for the Modeling and Inversion of
Structure-property relationships and their application to sheet metals. The project
proposes a methodology to automatically find an optimal sequence of processing
steps which produce a material structure that bears the desired properties. The
overall task is split in two steps: First find a mapping which delivers a set of struc-
tures with given properties and second, find an optimal process path to reach one
of these structures with least effort. The first step is achieved by machine learn-
ing the generalized mapping of structures to properties in a supervised fashion,
and then inverting this relation with methods delivering a set of goal structure
solutions. The second step is performed via reinforcement learning of optimal
paths by finding the processing sequence which leads to the best reachable goal
structure. The paper considers steel processing as an example, where the micro-
structure is represented by Orientation Density Functions and elastic and plastic
material target properties are considered. The paper shows the inversion of the
learned structure-property mapping by means of Genetic Algorithms. The search
for structures is thereby regularized by a loss term representing the deviation from
process-feasible structures. It is shown how reinforcement learning is used to find
deformation action sequences in order to reach the given goal structures, which
finally lead to the required properties.

Keywords: Computational Materials Science, Property-Structure-Mapping, Tex-
ture Evolution Optimization, Machine Learning, Reinforcement Learning

1 Introduction

The derivation of processing control actions to produce materials with certain, desired
properties is the ”inverse problem” of the causal chain ”process control” - ”microstructure
instantiation” - ”material properties”. The main goal of our current project is the creation
of a new basis for the solution of this problem by using modern approaches from machine
learning and optimization.

The inversion will be composed of two explicitly separated parts: ”Inverse Structure-
Property-Mapping” (SPM) and ”microstructure evolution optimization”. The focus of
the project lies on the investigation and development of methods which allow an in-
version of the structure-property-relations of materials relevant in the industry. This
inversion is the basis for the design of microstructures and for the optimal control of the
related production processes. Another goal is the development of optimal control meth-
ods yielding exactly those structures which have the desired properties. The developed
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methods will be applied to sheet metals within the frame of the project as a proof of con-
cept. The goals include the development of methods for inverting technologically relevant
”Structure-Property-Mappings” and methods for efficient microstructure representation
by supervised and unsupervised machine learning. Adaptive processing path-optimization
methods, based on reinforcement learning, will be developed for adaptive optimal control
of manufacturing processes.

We expect that the results of the project will lead to an increasing insight into techno-
logically relevant process-structure-property-relationships of materials. The instruments
resulting from the project will also promote the economically efficient development of
new materials and process controls.

2 Related Work

In general, approaches to microstructure design make high demands on the mathematical
description of microstructures, on the selection and presentation of suitable features, and
on the determination of structure-property relationships. For example, the increasingly
advanced methods in these areas enable Microstructure Sensitive Design (MSD), which
is introduced in [1] and [2] and described in detail in [3].

The relationship between structures and properties descriptors can be abstracted
from the concrete data by regression in the form of a Structure-Property-Mapping. The
idea of modeling a Structure-Property-Mapping by means of regression and in particular
using artificial neural networks was intensively pursued in the 1990s [4] and is still used
today. The approach and related methods presented in [5] always consist of a Structure-
Property-Mapping and an optimizer (in [5] Genetic Algorithms) whose objective function
represents the desired properties.

The inversion of the SPM can be alternatively reached via Generative Models. In
contrast to discriminative models (e.g. SPM), which are used to map conditional de-
pendencies between data (e.g. classification or regression), generative models map the
composite probabilities of the variables and can thus be used to generate new data from
the assumed population. Established, generative methods are for example Mixture Mod-
els [6], Hidden Markov Models [7] and in the field of artificial neural networks Restricted
Boltzmann Machines [8]. In the field of deep learning, generative models, in particular
generative adversarial networks [9], are currently being researched and successfully ap-
plied in the context of image processing. Conditional Generative Models can generalize
the probability of occurrence of structural features under given material properties. In
this way, if desired, any number of microstructures could be generated.

Based on the work on the SPM, the process path optimization in the context of the
MSD is treated depending on the material properties. For this purpose, the process is
regarded as a sequence of structure-changing process operations which correspond to ele-
mentary processing steps. Shaffer et al. [10] construct a so called texture evolution network
based on process simulation samples, to represent the process. The texture evolution net-
work can be considered as a graph with structures as vertices, connected by elementary
processing steps as edges. The structure vertices are points in the structure-space and
are mapped to the property-space by using the SPM for property driven process path
optimization. In [11] one-step deformation processes are optimized to reach the most
reachable element of a texture-set from the inverse SPM. Processes are represented by
so called process planes, principal component analysis (PCA) projections of microstruc-
tures reachable by the process. The optimization then is conducted by searching for the
process plane which best represents one of the texture-set elements. In [12], a generic
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ontology based semantic system for processing path hypothesis generation (MATCALO)
is proposed and showcased.

3 Research Concept

3.1 Inverse Structure-Property-Mapping (SPM)

The required mapping of the structures to the properties is modeled based on data from
simulations. The simulations are based on Taylor models. The structures are represented
using textures in the form of orientation density functions (ODF), from which the prop-
erties are calculated. In the investigations, elastic and plastic properties are considered in
particular. Structural features are extracted from the ODF for a more compact descrip-
tion. The project uses spectral methods such as generalized spherical harmonics (GSH) to
approximate the ODF. As an alternative representation we investigate the discretization
in the orientation-space, where the orientation density is represented by a histogram.

The solution of the inverse problem consists of a Structure-Property-Mapping and
an optimizer: As [4] described, the SPM is modeled by regression using artificial neural
networks. In this investigation, we use a multilayer perceptron.

Differential evolution (DE) is used for the optimization problem. DE is an evolutionary
algorithm developed by Rainer Storn and Kenneth Price [13]. It is a optimization method,
which repeatedly improves a candidate solution set under consideration of a given quality
measure over a continuous domain. The DE algorithm optimizes a problem by taking a
population of candidate solutions and generating new candidate solutions (structures) by
mutation and recombination existing ones. The candidate solution with the best fitness is
considered for further processing. So, for the generated structures the reached properties
are determined using the SPM.

The fitness F is composed of two terms: The property loss LP , which expresses, how
close the property of a candidate is to the target property, and the structure loss LS ,
which represents the degree of feasibility of the candidate structure in the process

F(~s, ~̂s, ~pr, ~pd) = LP(~pr, ~pd) + LS(~s, ~̂s), (1)

The property loss is the mean squared error (MSE) between the reached properties
pr ∈ ~pr and the desired properties pd ∈ ~pd:

LP(~pr, ~pd) =
1

N

N∑
i=1

(pri − pdi)2 (2)

Considering the goal that the genetic algorithm generates reachable structures, a
neural network is formed which functions as an anomaly detector. The data basis of this
neural network are structures that can be reached by a process. The goal of anomaly
detection is to exclude unreachable structures. The anomaly detection is implemented
using an autoencoder [14]. This is a neural network (see Fig. 1) which consists of the
following two parts: the encoder and the decoder. The encoder converts the input data
to an embedding space. The decoder converts the embedding space as close as possible
to the original data. Due to the reduction to an embedding space, the autoencoder uses
data compression and extracts relevant features. The cost function for the structures is a
distance function in the ODF-space, which penalizes the network if it produces outputs
that differ from the input. The cost function is also known as the reconstruction loss:
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LS(~s, ~̂s) =
N∑
i=1

(si − ŝi)2

(si + ŝi + λ)
, (3)

with si ∈ ~s as the original structures, ŝi ∈ ~̂s as the reconstructed structures and λ =
0.001 to avoid division by zero.

Fig. 1. Autoencoder for determining the structure loss

When using the anomaly detection, the autoencoder determines a high reconstruction
loss if the input data are structures that are very different from the reachable structures.
The overall approach is shown in Fig. 2 and consists of the following steps:

1. The genetic algorithm generates structures.
2. The SPM determines the reached properties of the generated structures.
3. The structure loss LS is determined by the reconstruction loss of the anomaly detector

for the generated structures with respect to the reachable structures.
4. The property loss LP is determined by the MSE of the reached properties and the

desired properties.
5. The fitness is calculated as the sum of the structure loss LS and the property loss
LP .

The structures, resulting from the described approach form the basis for optimal
process control.

3.2 Texture Evolution Optimization

Due to the forward mapping, the process evolution optimization based on texture evo-
lution networks ([10]) is restricted to a-priori sampled process paths. [11] relies on lin-
earization assumptions and is applicable to short process sequences only. [12] relies on
a-priori learned process models in the form of regression trees and is also applicable to
relatively short process sequences only.

UR-AI 2020 // 88



Fig. 2. Overview of our approach to find reachable structures with desired properties

As an adaptive alternative for texture evolution optimization, that can be trained to
find process-paths of arbitrary length, we propose methods from reinforcement learning.
For desired material properties ~pd. The inverted SPM determines a set of goal micro-
structures ~sd ∈ G, which are very likely reachable by the considered deformation process.
The texture evolution optimization objective is then to find the shortest process path P∗
starting from a given structure ~s0, and leading close to one of the structures from G.

P∗ = arg min |P| : E(s0,P) ∈ Gτ , (4)

where P = (ak)k=0,...,K ;K 5 T is a path of process actions a, T is the maximum
allowed process length. The mapping E(s,P) = sk delivers the resulting structure, when
applying P to the structure s. Here, for the sake of simplicity, we assume the process to
be deterministic, although the reinforcement learning methods we use are not restricted
to deterministic processes. Gτ is a neighbourhood of G, the union of all open balls with
radius τ and center points from G.

To solve the optimization problem by reinforcement learning approaches, it must be
reformulated as markov decision process (MDP), which is defined by the tuple (S,A, P,R).
In our case S is the space of structures ~s, A is the parameter-space of the deformation
process, containing process actions ~a, P : S × A 7→ S is the transition function of the
deformation process, which we assume to be deterministic. Rg : S × A 7→ R is a goal-
specific reward function. The objective of the reinforcement learning agent is then to
find the optimal goal-specific policy π∗g(st) = at that maximizes the discounted future
goal-specific reward

Vg(st) =
K∑
k=t

γk−tRg(sk, ak), (5)

where γ ∈ [0, 1] discounts early attained rewards, the policy πg(sk) determines ak and
the transition function P (sk, ak) determines sk+1.

For a distance function d in the structure space, the binary reward function
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Rg(s, a) =

{
1, if d(P (s, a), g) < τ

0, otherwise
(6)

if maximized, leads to an optimal policy π∗g that yields the shortest path to g from
every s for γ < 1. Moreover, if Vg is given for every microstructure from G, P from eq.
4 is identical with the application of the policy π∗ζ , where ζ = arg maxg[Vg].

π∗g can be approached by methods from reinforcement learning. Value-based reinforce-
ment learning is doing so by learning expected discounted future reward functions [15].
One of these functions is the so called value-function V . In the case of a deterministic
MDP and for a given g, this expectation value function reduces to Vg from eq. 4 and ζ
can be extracted if V is learned for every g from G. For doing so, a generalized form of
expectation value functions can be learned as it is done e.g. in [16].

This exemplary MDP formulation shows how reinforcement learning can be used
for texture evolution optimization tasks. The optimization thereby is operating in the
space of microstructures and does not rely on a-priori microstructure samples. When
using off-policy reinforcement learning algorithms and due to the generalization over
goal-microstructures, the functions learned while solving a specific optimization task can
be easily transferred to new optimization tasks (i.e. different desired properties or even
a different property space).
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Abstract. While being increasingly used in larger industry companies, indus-
trial robots have not yet prevailed in smaller enterprises. Not least, this is due
to the time-consuming programming and the requirement for robotics experts.
An intuitive control and programming concept can decisively reduce the need for
expert knowledge. Using modern rendering software and innovative visualization
frameworks, a gesture-based programming approach was developed at Karlsruhe
University of Applied Sciences. Here, the user creates the robot program by vir-
tually executing and chaining robot poses and gripper instructions. An evaluation
shows the advantages of the developed concept and a comparison with competing
methods.

Keywords: Robot Programming; Virtual Robot; Mixed Reality; 3D-Engine; Small
and Medium-sized Enterprises

1 Introduction

Industrial robots are mainly deployed in large-scale production, especially in the au-
tomotive industry. Today, there are already 26.1 industrial robots deployed per 1,000
employees on average in these industry branches. In contrast, Small and Medium-sized
Enterprises (SMEs) only use 0.6 robots per 1,000 employees [1]. Reasons for this low
usage of industrial robots in SMEs include the lack of flexibility with great variance of
products and the high investment expenses due to additional peripherals required, such as
gripping or sensor technology. The robot as an incomplete machine accounts for a fourth
of the total investment costs [2]. Due to the constantly growing demand of individualized
products, robot systems have to be adapted to new production processes and flows [3].
This development requires the flexibilization of robot systems and the associated fre-
quent programming of new processes and applications as well as the adaption of existing
ones. Robot programming usually requires specialists who can adapt flexibly to different
types of programming for the most diverse robots and can follow the latest innovations.
In contrast to many large companies, SMEs often have no in-house expertise and a lack
of prior knowledge with regard to robotics. This often has to be obtained externally via
system integrators, which, due to high costs, is one of the reasons for the inhibited use of
robot systems. During the initial generation or extensive adaption of process flows with
industrial robots, there is a constant risk of injuring persons and damaging the expen-
sive hardware components. Therefore, the programs have to be tested under strict safety
precautions and usually in a very slow test mode. This makes the programming of new
processes very complex and therefore time- and cost-intensive.
The concept presented in this paper combines intuitive, gesture-based programming with
simulation of robot movements. Using a mixed reality solution, it is possible to create
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a simulation-based visualization of the robot and project, to program and to test it in
the working environment without disturbing the workflow. A virtual control panel en-
ables the user to adjust, save and generate a sequence of specific robot poses and gripper
actions and to simulate the developed program. An interface to transfer the developed
program to the robot controller and execute it by the real robot is provided.
The paper is structured as follows. First, a research on related work is conducted in
Section 2, followed by a description of the system of the gesture-based control concept in
Section 3. The function of robot positioning and program creation is described in Section
4. Last follow the evaluation in Section 5 and conclusion in Section 6.

2 Related Work

Various interfaces exist to program robots, such as Lead-Trough, Offline or Walk-Trough
programming, Programming by demonstration, vision based programming or vocal com-
manding. In the survey of Villani et al. [4] a clear overview on existing interfaces for
robot programming and current research is provided. Besides the named interfaces, the
programming of robots using a virtual or mixed reality solution aims to provide intu-
itiveness, simplicity and accessibility of robot programming for non-experts. Designed for
this purpose, Guhl et al. [5] developed a generic architecture for human-robot interaction
based on virtual and mixed reality. In the marker tracking based approach presented
by [6] and [7], the user defines a collision-free-volume and generates and selects control
points while the system creates and visualizes a path through the defined points. Others
[8], [9], [10] and [11] use handheld devices in combination with gesture control and motion
tracking. Herein, the robot can be controlled through gestures, pointing or via the device,
while the path, workpieces or the robot itself are visualized on several displays. Other
gesture and virtual or mixed reality based concepts are developed by Cousins et al. [12]
or Tran et al. [13]. Here, the robots perspective or the robot in the working environment
is presented to the user on a display (head-mounted or stationary) and the user controls
the robot via gestures. Further concepts using a mixed reality method enable an image
of the workpiece to be imported into CAD and the system automatically generates a
path for robot movements [14] or visualizing the intended motion of the robot on the
Microsoft HoloLens, that the user knows where the robot will move to next [15]. Other
methods combine pointing at objects on an screen with speech instructions to control the
robot [16]. Sha et al. [17] also use a virtual control panel in their programming method,
but for adjusting parameters and not for controlling robots. Another approach pursues
programming based on cognition, spatial augmented reality and multimodal input and
output [18], where the user interacts with a touchable table.
Krupke et al. [19] developed a concept in which humans can control the robot by head
orientation or by pointing, both combined with speech. The user is equipped with a
head-mounted display presenting a virtual robot superimposed over the real robot. The
user can determine pick and place position by specifying objects to be picked by head
orientation or by pointing. The virtual robot then executes the potential pick movement
and after the user confirms by voice command, the real robot performs the same move-
ment. A similar concept based on gesture and speech is persued by Quintero et al. [20],
whose method offers two different types of programming. On the one hand, the user can
determine a pick and place position by head orientation and speech commands. The sys-
tem automatically generates a path which is displayed to the user, can be manipulated
by the user and is simulated by a virtual robot. On the other hand, it is possible to
create a path on a surface by the user generating waypoints. Ostanin and Klimchik [21]
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introduced a concept to generate collision-free paths. The user is provided with virtual
goal points that can be placed in the mixed reality environment and between which a
path is automatically generated. By means of a virtual menu, the user can set process
parameters such as speed, velocity etc.. Additionally, it is possible to draw paths with a
virtual device and the movement along the path is simulated by a virtual robot.
Differently to the concept described in this paper, only a pick and place task can be
realized with the concepts of [19] and [20]. A differentiation between movements to posi-
tions and gripper commands as well as the movement to several positions in succession
and the generation of a program structure are not supported by these concepts. An-
other distinction is that the user only has the possibility to show certain objects to the
robot, but not to move the robot to specific positions. In [19] a preview of the movement
to be executed is provided, but the entire program (pick and place movements) is not
simulated. In contrast to [21], with the concept presented in this paper it is possible to
integrate certain gripper commands into the program. With [21] programming method,
the user can determine positions but exact axis angles or robot poses cannot be set.
Overall, the approach presented in this paper offers an intuitive, virtual user interface
without the use of handheld devices (cf. [6], [7], [8], [9], [10] and [11]) which allows the
exact positions of the robot to be specified. Compared to other methods, such as [12],
[13], [14], [15] or [16], it is possible to create more complex program structures, which in-
clude the specification of robot poses and gripper positions, and to simulate the program
in a mixed reality environment with a virtual robot.

3 Mixed Reality Robot Programming System

In this section the components of the Mixed Reality Robot Programming System are
introduced and described. The system consists of multiple real and virtual interactive
elements, whereby the virtual components are projected directly into the field of view
using a Mixed Reality (MR) approach. Compared to the real environment, which con-
sists entirely of real objects and virtual reality (VR), which consists entirely of virtual
objects and which overlays the real reality, in MR the real scene here is preserved and
only supplemented by the virtual representations [22]. In order to interact in the differ-
ent realities, head-mounted devices similar to glasses, screens or mobile devices are often
used. Figure 1 provides an overview of the systems components and their interaction.
The system presented in this paper includes KUKAs collaborative, lightweight robot
LBR iiwa 14 R820 combined with an equally collaborative gripper from Zimmer as real
components and a virtual robot model and a user interface as virtual components. The
virtual components are presented on the Microsoft HoloLens. For calculation and render-
ing the robot model and visualization of the user interface, the 3D- and physics-engine of
the Unity3D development framework is used. Furthermore, for supplementary functions,
components and for building additional MR interactable elements, the Microsoft Mixed
Reality Toolkit (MRTK) is utilized.
For spatial positioning of the virtual robot, marker tracking is used, a technique sup-
ported by the Vuforia framework. In this use case, the image target is attached to the
real robot’s base, such that in MR the virtual robot superimposes the real robot. The
program code is written in C].
The robot is controlled and programmed via an intuitive and virtual user interface that
can be manipulated using the so-called Airtap gesture, a gesture provided by Microsoft
HoloLens.

UR-AI 2020 // 95



Fig. 1. Diagram of the systems components and their interaction.

3.1 Virtual Robot Model

To ensure that the virtual robot mirrors the motion sequences and poses of the real robot,
the most exact representation of the real robot is employed. The virtual robot consists
of a total of eight links, matching the base and the seven joints of iiwa 14 R820:

– the base frame,
– five joint modules,
– the central hand and
– the media flange.

The eight links are connected together as a kinematic chain. The model is provided as
open source files from [23] and [24] and is integrated into the Unity3D project.
The individual links are created as GameObjects in a hierarchy, with the base frame
defining the top level and are limited similar to those of the real robot. The CAD data
of the deployed gripping system is also imported into Unity3D and linked to the robot
model.

3.2 User Interface

The canvas of the head-up displayer of the Microsoft HoloLens is divided into two parts
and rendered at a fixed distance in front of the user and on top of the scene. At the top
left side of the screen the current joint angles (A1 to A7) are displayed and on the left
side the current program is shown. This setting simplifies the interaction with the robot
as the informations do not behave like other objects in the MR scene, but are attached to
the Head Up Display (HUD) and move with the user’s field of view. The user interface,
which consists of multiple interactable components, is placed into the scene and is shown
at the right side of the head-up display.
At the beginning of the application the user interface is in ”Clear Screen” mode, i.e. only
the buttons ”Drag”, ”Cartesian”, ”Joints”, ”Play” and ”Clear Screen” and the joint
angles at the top left of the screen are visible. For interaction with the robot, the user
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has to switch into a particular control mode by tapping the corresponding button.
The user interface provides three different control modes for positioning the virtual robot:

– Drag Mode, for rough positioning,
– Cartesian Mode, for Cartesian positioning and
– Joint Mode, for the exact adjustment of each joint angle.

Figure 2 shows the interactable components that are visible and therefore controllable in
the respective control modes.

Fig. 2. User interface control modes and visible interactable elements: (1): Drag Mode; (2):
Cartesian Mode; (3): Joints Mode.

Depending on the selected mode, different interactable components become visible in the
user interface, with whom the virtual robot can be controlled. In addition to the control
modes, the user interface offers further groups of interactable elements:

– Motion Buttons, with which e.g. the speed of the robot movement can be adjusted
or the robot movement can be started or stopped,

– Application Buttons, to save or delete specific robot poses, for example,
– Gripper Buttons, to adjust the gripper and
– Interface Buttons, that enable communication with the real robot.

4 Usage

This section focuses on the description of the usage of the presented approach. In addition
to the description of the individual control modes, the procedure for creating a program
is also described. As outlined in Section 3.2, the user interface consists of three different
control modes and four groups of further interactable components. Through this concept,
the virtual robot can be moved efficiently to certain positions with different movement
modes, the gripper can be adjusted, the motion can be controlled and a sequence of
positions can be chained.

4.1 Control Modes

Drag By gripping the tool of the virtual robot with the Airtap gesture, the user can
“drag” the robot to the required position. Additionally, it is possible to rotate the position
of the robot using both hands. This mode is particularly suitable for moving the robot
very quickly to a certain position.
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Cartesian This mode is used for the subsequent positioning of the robot tool with mil-
limeter precision. The tool can be translated to the required positions using the Cartesian
coordinates X, Y, Z and the Euler angles A, B, C. The user interface provides a separate
slider for each of the six translation options.The tool of the robot moves analogously to
the respective slider button, which the user can set to the required value.

Joints This mode is an alternative to the Cartesian method for exact positioning. The
joints of the virtual robot can be adjusted precisely to the required angle, which is
particularly suitable for e.g. bypassing an obstacle. There is a separate slider for each
joint of the virtual robot. In order to set the individual joint angles, the respective slider
button is dragged to the required value, which is also displayed above the slider button
for better orientation.

4.2 Programming the Robot

To program the robot, the user interface provides various application buttons, such as
saving and removing robot poses from the chain and a display of the poses in the chain.
The user directs the virtual robot to the desired position and confirms using the corre-
sponding button. The pose of the robot is then saved as joint angles from A1 to A7 and
one gripper position in a list and is displayed on the left side of the screen. When run-
ning the programmed application, the robot moves to the saved robot poses and gripper
positions according to the defined sequence. For a better orientation, the robots current
target position changes its color from white to red. After testing the application, the list
of robot poses can be sent to the controller of the real robot via a webservice. The real
robot then moves analogously to the virtual robot to the corresponding robot poses and
gripper positions.

Fig. 3. The user’s view in the mixed reality environment.
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5 Evaluation of the Programming Concept

The purpose of the evaluation is how the gesture-based control concept compares to other
concepts regarding intuitiveness, comfort and complexity. For the evaluation, a study was
conducted with seven test persons, who had to solve a pick and place task with five dif-
ferent operating concepts and subsequently evaluate them. The developed concept based
on gestures and MR was evaluated against a lead through procedure, programming with
Java, programming with a simplified programming concept and approaching and sav-
ing points with KUKA SmartPad. The test persons had no experience with Microsoft
HoloLens and MR, no to moderate experience with robots and no to moderate program-
ming skills. The Questionnaire for the Evaluation of Physical Assistive Devices (QUEAD)
developed by Schmidtler et al [25] was used to evaluate and compare the five control con-
cepts. The questionnaire is classified into five categories (perceived usefulness, perceived
ease of use, emotions, attitude and comfort) and contains a total of 26 questions, rated
on an ordinal scale from 1 (entirely disagree) to 7 (entirely agree).
Firstly, each test person received a short introduction to the respective control concept,
conducted the pick and place task and immediately afterwards evaluated the respective
control concept using QUEAD.

5.1 Results of the QUEAD

Figure 4 provides an extract of the results of the study.

Fig. 4. Extract from the results of the study to compare the control concepts (from left to right):
gesture-based control concept, Lead Through, Java, Simplified Programming Concept, KUKA
SmartPad.

All test persons agreed that they would reuse the concept in future tasks (3 mostly agree,
4 entirely agree). In addition, the test persons considered the gesture-based concept to
be intuitive (1 mostly agree, 4 entirely agree), easy to use (5 mostly agree, 2 entirely
agree) and easy to learn (1 mostly agree, 6 entirely agree). Two test persons mostly
agree and four entirely agree that the gesture-based concept enabled them to solve the
task efficiently and four test persons mostly agree and two entirely agree that the concept
enhances their work performance. All seven subjects were comfortable using the gesture-
based concept (4 mostly agree, 2 entirely agree).
Overall, the concept presented in this paper was evaluated as more comfortable, more
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intuitive and easier to learn than the other control concepts evaluated. In comparison to
them, the new operating concept was perceived as the most useful and easiest to use.
The test persons felt physically and psychologically most comfortable when using the
concept and were most positive in total.

6 Conclusion

In this paper, a new concept for programming robots based on gestures and MR and
for simulating the created applications was presented. This concept forms the basis for a
new, gesture-based programming method, with which it is possible to project a virtual
robot model of the real robot into the real working environment by means of a MR solu-
tion, to program it and to simulate the workflow. Using an intuitive virtual user interface,
the robot can be controlled by three control modes and further groups of interactable
elements and via certain functions, several robot positions can be chained as a program.
By using this concept, test and simulation times can be reduced, since on the one hand
the program can be tested directly in the MR environment without disturbing the work-
flow. On the other hand, the robot model is rendered into the real working environment
via the MR approach, thus eliminating the need for time-consuming and costly modeling
of the environment.
The results of the user study indicate that the control concept is easy to learn, intuitive
and easy to use. This facilitates the introduction of robots and especially in SMEs, since
no expert knowledge is required for programming, programs can be created rapidly and
intuitively and processes can be adapted flexibly. In addition, the user study showed that
tasks can be solved efficiently and the concept is perceived as performance-enhancing.
Potential directions of improvement are: Implement various movement types, such as
point-to-point, linear and circular movements in the concept. This makes the robot mo-
tion more flexible and efficient, since positions can be approached in different ways de-
pending on the situation. Another improvement is to extend the concept with collabo-
rative functions of the robot, such as force sensitivity or the ability to conduct search
movements. In this way, the functions that make collaborative robots special can be in-
tegrated into the program structure. A further approach for improvement is to engage in
a larger scale study.
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Abstract Due to a steady increase in traffic at sea, the need for support in sur-
veillance task is growing for coast guards and other law enforcement units all over
the world. An important cornerstone is a reliable vessel classification, which can
be used for detecting criminal activities like illegal, unreported and unregulated
fishing or smuggling operations. As many ships are required to transmit their pos-
ition by using the automatic identification system (AIS), it is possible to generate
a large dataset containing information on the world wide traffic. This dataset is
used for implementing deep neural networks based on residual neural networks
for classifying the most common shiptypes based on their movement patterns and
geographical features. This method is able to reach a competitive result. Further,
the results show the effectiveness of residual networks in time-series classification.

Keywords: residual neural network, time series classificaiton, convolutional neural
networks, maritime domain, ship classification

1 Introduction

In 2019 the world’s commercial fleet consists of 95,402 ships with a total capacity of
1,976,491 thousand dwt. (a plus of 2.6 % in carrying capacity compared to last year) [1].
According to the International Chamber of Shipping, the shipping industry is responsible
for about 90 % of all trade [2]. In order to ensure the safe voyage of all participant in the
international travel at sea, the need for monitoring is steadily increasing.

While more and more data regarding the sea traffic is collected by using cheaper and
more powerful sensors, the data still needs to be processed and understood by human
operators. In order to support the operators, reliable anomaly detection and situation
recognition systems are needed. One cornerstone for this development is a reliable auto-
matic classification of vessels at sea.

For example by classifying the behaviour of non cooperative vessels in ecological
protected areas, the identification of illegal, unreported and unregulated (IUU) fishing
activities is possible. IUU fishing is in some areas of the world a major problem, e. g., »in
the wider-Caribbean, Western Central Atlantic region, IUU fishing compares to 20-30
percent of the legitimate landings of fish« [3] resulting in an estimated value between
USD 700 and 930 million per year.

One approach for gathering information on the sea traffic is based on the automatic
identification system (AIS)3. It was introduced as a collision avoidance system. As each

3 https://gpsd.gitlab.io/gpsd/AIVDM.html
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vessel is broadcasting its information on an open channel, the data is often used for other
purposes, like training and validating of machine learning models.

AIS provides dynamic data like position, speed and course over ground, static data
like MMSI4, shiptype and length, and voyage related data like draught, type of cargo,
and destination about a vessel.

The system is self-reporting, it has no strong verification of transmission, and many of
the fields in each message are set by hand. Therefore, the data can not be fully trusted. As
Harati-Mokhtari et al. [4] stated, half of all AIS messages contain some erroneous data.
As for this work, the dataset is collected by using the AIS stream provided by AISHub5,
the dataset is likely to have some amount of false data. While most of the errors will
have no further consequences, minor coordinate inaccuracies or wrong vessel dimensions
are irrelevant, some false information in vessel information can have an impact on the
model performance.

2 Related Work

Classification of maritime trajectories and the detection of anomalies is a challenging
problem, e.g., since classifications should be based on short observation periods, only
limited information is available for vessel identification. Riveiro et al. [5] give a survey
on anomaly detection at sea, where shiptype classification is a subtype.

Jiang et al. [6] present a novel TrajectoryNet capable of point-based classification.
Their approach is based on the usage of embedding GPS coordinates into a new feature
space. The classification itself is accomplished using an long short-term memory (LSTM)
network.

Further, Jiang et al. [7] propose a partition-wise LSTM (PLSTM) for point-based
binary classification of AIS trajectories into fishing or non-fishing activity. They evaluated
their model against other recurrent neural networks and achieve a significantly better
result than common recurrent network architectures based on LSTM or gated recurrent
units.

A recurrent neural network is used by Nguyen et al. in [8] to reconstruct incomplete
trajectories, detect anomalies in the traffic data and identify the real type of a vessel.
They are embedding the position data to generate a new representation as input for the
neural network.

Besides these neural network based approaches, other methods are also used for situ-
ation recognition tasks in the maritime domain. Especially expert-knowledge based sys-
tems are used frequently, as illegal or at least suspicious behaviour is not recorded as
often as desirable for deep learning approaches.

Conditional Random Fields are used by Hu et al. [9] for the identification of fishing
activities from AIS data. The data has been labelled by an expert and contains only
longliner fisher boats.

Saini et al. [10] propose an hidden Markov model (HMM) based approach to the
classification of trajectories. They combine Global-HMM and Segmental-HMM using a
genetic algorithm. In addition, they tested the robustness of the framework by adding
Gaussian noise.

In [11] Fischer et al. introduce a holistic approach for situation analysis based on
Situation-Specific Dynamic Bayesian Networks (SSDBN). This includes the modelling
of the SSDBN as well as the presentation to end-users. For a Bayesian Network, the
4 “Maritime Mobile Service Identity” as unique identifier for the association of data
5 https://www.aishub.net

UR-AI 2020 // 104



parametrisation of the conditional probability tables is crucial. Fischer introduces an
algorithm for choosing these parameters in a more transparent way. Important for the
functionality is the ability of the network to model the domain knowledge and the hand-
ling of noisy input data. For the evaluation, simulated and real data is used to assess the
detection quality of the SSDBN.

Based on DBNs, Anneken et al. [12] implemented an algorithm for detecting illegal
diving activities in the North Sea. As explained by de Rosa et al. [13] an additional layer
for modelling the reliability of different sensor sources is added to the DBN.

3 Preprocessing

In order to use the AIS data, preprocessing is necessary. This includes cleaning wrong
data, filtering data, segmentation, and calculation of additional features. The whole work-
flow is depicted in Figure 1. The input in form of AIS data and different maps is shown
as blue boxes. All relevant MMSIs are extracted from the AIS data. For each MMSI, the
position data is used for further processing. Segmentation into separate trajectories is the
next step (yellow). The resulting trajectories are filtered (orange). Based on the remain-
ing trajectories, geographic (green) and trajectory (purple) based features are derived.
For each of the resulting sequences, the data is normalized (red), which results in the final
dataset. Only the 6 major shiptypes in the dataset are used for the evaluation. These
are “Cargo”, “Tanker”, “Fishing”, “Passenger”, “Pleasure Craft” and “Tug”. Due to their
similar behaviour, “Cargo” and “Tanker” will combined to a single class “Cargo-Tanker”.
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Figure 1: Visualization of all preprocessing steps. Input in blue, segmentation in yellow,
filtering in orange, geographic features in green, trajectory feature in purple and normal-
ization in red.

3.1 Trajectory features

Four different trajectory features are used:
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– Time difference
– Speed over ground
– Course over ground
– Trajectory transformation

As the incoming data from AIS is not necessarily uniformly distributed in time, there is
a need to create a feature representing the time dimension. Therefore, the time difference
between two samples is introduced.

As the speed and course over ground is directly accessible through the AIS data, the
network will be directly fed with these features. The vessel’s speed is a numeric value in
0.1-knot resolution in the interval [0; 1022] and the course is the negative angle in degrees
relative to true north and therefore in the interval [0; 359].

The position will be transformed in two ways. The first transformation, further called
“relative-to-first”, will shift the trajectory to start at the origin. The second transforma-
tion, henceforth called “rotate-to-zero”, will rotate the trajectory, in such a way, that the
end point is on the x-axis.

3.2 Geographic features

Additional to the trajectory based features, two geographic features are derived by using
coastline maps6 and a map of large harbours. The coastline map consists of a list of line
strips. In order to reduce complexity, the edge points are used to calculate the “Distance-
To-Coast”. Further, only a lower resolution of the shapefile itself is used. In Figure 2, the
resolution “high” and “low” for some fjords in Norway are shown. Due to the geoindex’
cell size set to 40 km, a radius of 20 km can be queried.

Figure 2: Comparison between the “high” (left) and “low” (right) resolution of the coast-
line.

The world’s 140 major harbours based on the world port index7 are used to calcu-
late the “Distance-to-Closest-Harbor”. As fishing vessels are expected to stay near to a
certain harbour, this feature should support the network to identify some shiptypes. The
geoindex’ cell size is set for this feature to 5,000 km, resulting in a maximum radius of
2,500 km.

3.3 Segmentation

The data is split into separate trajectories by using gaps in either time or space, or
the sequence length. As real AIS data is used, package loss during the transmission is
common. This problem is tackled by splitting the data
6 http://www.soest.hawaii.edu/wessel/gshhg/
7 https://msi.nga.mil/Publications/WPI
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– if the time between two successive samples is larger than 2 hours, or
– if the distance between two successive samples is large.

Regarding the distance, even though the great circle distance is more accurate, the euc-
lidean distance is used. For simplification the distance value is squared and as a threshold
10−4 is used. Depending on latitude this corresponds to a value of about 1 km at the
equator and only about 600 m at 60◦ N. Since the calculation includes approximation a
relatively high threshold is chosen.

As the neural network depends on a fixed input size, the data is split into fitting
chunks by cutting and padding with these rules:

– Longer sequences are split into chunks according to the desired sequence length.
– Any left over sequence shorter than 80 % of the desired length is discarded.
– The others will be padded with zeroes.

This results in segmented trajectories of similar but not necessarily same duration.

3.4 Filter

As this work is about the vessel behaviour at sea, stationary vessels (anchored and moored
vessels) and vessels traversing rivers are removed from the segmented trajectories. The
stationary vessels are identified by using a measure of movement in a trajectory:

αstationary =

∑n
i=1 |Pi − Pi−1|

n
, (1)

where n as the sequence length and Pi its data points. A trajectory will be removed if
αstationary is below a certain threshold.

A shapefile8 containing the major and most minor rivers (compare ??) is used in
order to remove the vessels not on the high seas. A sequence with more than 50 % of its
points on a river is removed from the dataset.

3.5 Normalization

In order to speed up the training process, the data is normalized in the interval [0; 1] by
applying

X ′ =
X −Xmin

Xmax −Xmin
. (2)

Here, for the positional features a differentiation between “global normalization” and
“local normalization” is taken into account. The “global normalization” will scale the
input data for the maximum Xmax and minimum Xmin calculated over the entire data
set, while “local normalization” will estimate the maximum Xmax and minimum Xmin
only over the trajectory itself. As the data is processed parallel, the parameters for the
“global normalization” will be calculated only for each chunk of data. This will result in
slight deviations in the minimum and maximum, but for large batches this should be
neglectable.

All other additional features are normalized as well. For the geographic features
"Distance-to-Coast" and "Distance-to-Closest-Harbor" the maximum distance, that can
be queried depending on grid size, is used as Xmax and 0 is used as the lower bound
Xmin.

The time difference feature is scaled using a minimum Xmin of 0 and the threshold
for the temporal gap since this is the maximum value for this feature. Speed and course
are normalized using 0 and their respective maximum values.
8 http://www.soest.hawaii.edu/wessel/gshhg/
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3.6 Resulting dataset

For the dataset, a period between 2018-07-24 and 2018-11-15 is used. Altogether 209,536
unique vessels with 2,144,317,101 raw data points are included. Using this foundation
and the previously described methods, six datasets are derived. All datasets use the
same spatial and temporal thresholds. In addition, filter thresholds are identical as well.
The datasets differentiate in their sequence length and by applying only the “relative-
to-first” transformation or additionally the “rotate-to-zero” transformation. Either 360,
1,080, or 1,800 points per sequence are used resulting in approximate 1 h, 3 h, or 5 h
long sequences. In Figure 3, the distribution of shiptypes in the datasets after applying
the different filters is shown.
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Figure 3: Number of sequences per class.

4 Neural Network Design

For the shiptype classification, neural networks are chosen. The different networks are
implemented using Keras [14] with TensorFlow as backend [15].

Fawaz et al. [16] have shown, that, despite their initial design for image data, a residual
neural network (ResNet) can perform quite well on time-series classification. Thus, as
foundation for the evaluated architectures the ResNet is used. The main difference to
other neural network architectures is the inclusion of “skip connections”. This allows for
deeper networks by circumventing the vanishing gradient problem during the training
phase.

Based on the main idea of a ResNet, several architectures are designed and evaluated
for this work. Some information regarding the structure are given in Table 1. Further,
the single architectures are depicted in Figures 4a to 4f.

The main idea behind these architectures is to analyse the impact of the depth of
the networks. Furthermore, as the features itself are not necessarily logically linked with
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each other, the hope is to be able to capture the behaviour better by splitting up the
network path for each feature.

To verify the necessity of CNNs two multilayer perceptron (MLP) based networks are
tested: One with two hidden layers and one with four hidden layers, all with 64 neurons
and fully connected with their adjacent layers. The majority of the parameters for the
two networks are bound in the first layer. They are necessary to map the large number
of input neurons, e. g., for the 360 samples dataset 360 ∗ 9 = 3,240 input neurons, to the
first hidden layer.

Table 1: Parameter of neural network architectures.
Name Depth # Parameters

Tiny ResNet 11 29,125
Shallow ResNet 21 440,837
Deep ResNet 66 1,327,877

Stretched Deep ResNet 66 3,280,645
Split ResNet 26 390,701

Total Split ResNet 26 364,461

MLP for 360 samples 4 211,909
deeper MLP for 360 samples 6 220,229

5 Training

Each of the datasets is split into three parts: 64 % for the training set, 16 % for the
validation set, and 20 % for the test set. For solving or at least mitigating the prob-
lem of overfitting, regularization techniques (input noise, batch normalization, and early
stopping) are used.

Small noise on the input in the training phase is used to support the generalization
of the network. For each feature a normal distribution with a standard deviation of 0.01
and a mean of 0 is used as noise.

Furthermore, batch normalization is implemented. This means, before each ReLU-
layer a batch normalization layer is added, allowing higher learning rates. Therefore, the
initial learning rate is doubled. Additionally, the learning rate is halved if the validation
error does not improve after ten training epochs, improving the training behaviour during
oscillation on a plateau.

In order to prevent overfitting, an early stopping criteria is introduced. The Training
will be interrupted if the validation error is not decreasing after 15 training epochs.

To counter the dataset imbalance, class weights were considered but ultimately did
not lead to better classification results and were discarded.

6 Evaluation

The different neural network architectures are evaluated on a AMD Ryzen Threadripper
1920X 12-Core Processor with 64 GB of memory and 4x Nvidia Geforce GTX 1080
Ti. Each network is evaluated on the six datasets. For the ResNet based networks, the
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(a) Tiny ResNet
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(b) Shallow ResNet

In
p

u
t

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

M
a

x 
Po

o
lin

g 
–

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 1

R
e

LU

C
o

n
v 

1
 –

 S
tr

id
e

 1

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 2

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 2

A
d

d

R
e

LU

G
lo

b
al

 A
vg

. P
o

o
lin

g

D
e

n
se

D
e

n
se

In
p

u
t

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

M
a

x 
Po

o
lin

g 
–

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 1

R
e

LU

C
o

n
v 

1
 –

 S
tr

id
e

 1

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 2

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

A
d

d

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 2

R
e

LU

C
o

n
v 

3
 –

 S
tr

id
e

 1

C
o

n
v 

1
 –

 S
tr

id
e

 2

A
d

d

R
e

LU

G
lo

b
al

 A
vg

. P
o

o
lin

g

D
e

n
se

9
x

(c) Deep ResNet
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Figure 4: Schematic architectures.
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batch normalization and the input noise is tested. The initial learning rate is set to
0.001 without batch normalization and 0.002 with batch normalization activated. The
maximum number of epochs is set to 600. The batch sizes are set to 64, 128, and 256 for
360, 1,080, and 1,800 samples per sequence respectively.

In total 144 different setups are evaluated. Furthermore, 4 additional networks are
trained on the 360 samples dataset with “relative-to-first” transformation. Two MLPs
to verify the need of deep neural networks, and the Shallow and Deep ResNet trained
without geographic features to measure the impact of these features.
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Figure 5: F1-Scores of all networks. In addition, the regularization methods used are
shown. The first row shows the results for the “relative-to-first” (rtf) transformation, the
second for the “rotate-to-zero” (rtz) transformation.

The results for the six different architectures are depicted in Figure 5. For 360 samples
the Shallow ResNet and the Deep ResNet outperformed the other networks. In case
of the “relative-to-first” transformation (see Figure 5a), the Shallow ResNet achieved
an F1-Score of 0.920, while the Deep ResNet achieved 0.919. For the “rotate-to-zero”
transformation (see Figure 5d), the Deep ResNet achieved 0.918 and the Shallow ResNet
0.913. In all these cases the regularization methods lead to no improvements.

The “relative-to-first” transformation performs slightly better overall. For the datasets
with 360 samples per sequence, the standard ResNet variants achieve higher F1-Scores
compared to the Split ResNet versions. But this difference is relatively small. As expected,
the Tiny ResNet is not large and deep enough to classify the data on a similar level.

For the “relative-first” transformation and trajectories based on 1080 samples (see
Figure 5b), the Split ResNet and the Total Split ResNet achieve the best results. The
first performed well with an F1-Score of 0.913, while the latter is slightly worse with
0.912. In both cases again the regularization did not improve the result. For the “rotate-
to-zero” transformation (see Figure 5e), the Shallow ResNet achieved an F1-Score of 0.907
without any regularization and 0.905 with only the the noise added to the input.

For the largest sequence length of 1,800 samples, the split based networks slightly out-
perform the standard ResNets. For the “relative-to-first” transformation (see Figure 5c),
the Split ResNet achieved an F1-Score of 0.911, while for the “rotate-to-zero” transform-
ation (see Figure 5f) the Total Split ResNet reached an F1-Score of 0.898. Again without
noise and batch normalization.
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Figure 6: Confusion matrix of the Shallow ResNet on 360 samples with “relative-to-first”
transformation, without added input noise and batch normalization.

To verify, that the implementation of CNNs is actually necessary, additional tests with
MLPs were carried out. Two different MLPs are trained on the 360 samples dataset with
“relative-to-first” transformation since this dataset leads to best results for the ResNet
architectures. Both networks lead to no results as their output always is the “Cargo-
Tanker” class regardless of the actual input. The only thing the models are able to
learn is, that the “Cargo-Tanker” class is the most probable class based on the uneven
distribution of classes.

An MLP is not the right model for this kind of data and performs badly. The large
dimensionality of even the small sequence length makes the use of the fully connected
networks impracticable. Probably, further hand-crafted feature extraction is needed to
achieve better results.

To measure the impact the feature “Distance to Coast” and “Distance to Closest Har-
bor” have on the overall performance, a Shallow ResNet and a Deep ResNet are trained
on the 360 sample length data set with the “relative-to-first” transformation excluding
these features. The trained networks have F1-Scores of 0.888 and 0.871 respectively. This
means, by including this features, we are able to increase the performance by 3.5 %.

7 Discussion

The “relative-to-first” transformation compared to the “rotate-to-zero” transformation
yields the better results. Especially, this is easily visible for the longest sequence length.
A possible explanation can be seen in the “stationary” filter. This filter removes more tra-
jectories for the “relative-to-first” transformation than for the additional “rotate-to-zero”
transformation. A problem might be, that the end point is used for rotating the traject-
ory. This adds a certain randomness to the data, especially for round trip sequences.

In some cases, the Stretched Deep ResNet is not able to learn the classes. It is pos-
sible, that there is a problem with the structure of the network or the large number of
parameters. Further, there seems to be a problem with the batch normalization, as seen
in Figures 5c and 5e.

The overall worse performance of the “rotate-to-zero” transformation could be because
of the difference in the “stationary” filter. In the “rotate-to-zero” dataset, fewer sequences
are filtered out. The filter leads to more “Fishing” and “Pleasure Craft” sequences in
relation to each other as described in section 3.6. This could also explain the difference
in class prediction distribution since the network is punished more for mistakes in these
classes because more classes are overall from this type.
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For the evaluation, the expectation based on previous work by other authors was, that
the shorter sequence length should perform worse compared to the longer ones. Instead
the shorter sequences outperform the longer ones. The main advantages of the shorter
sequences are essentially the larger number of sequences in the dataset. For example
the 360 samples dataset with “relative-to-first” transformation contains about 2.2 million
sequences, while the corresponding 1,800 sample dataset contains only approximately
250,000 sequences.

In addition, the more frequent segmentation can yield more easily classifiable se-
quences: The behaviour of a fishing vessel in general contains different characteristics,
like travelling from the harbour to the fishing ground, the fishing itself, and the way
back. The travelling parts are similar to other vessels and only the fishing part is unique.
A more aggressive segmentation will yield more fishing sequences, that will be easier to
classify regardless of observation length.

The Shallow ResNet has the overall best results by using the 360 samples dataset
and the “relative-to-first” transformation. The results for this setup are shown in the
confusion matrix in Figure 6. As expected, the Tiny ResNet is not able to compete with
the others. The other standard ResNet architectures performed well, especially on shorter
sequences.

The Split architectures are able to perform better on datasets with longer sequences,
with the Shallow ResNet achieving similar performance. Comparing the number of para-
meters, all three architectures have about 400,000 the Shallow ResNet about 50,000 more,
the Total Split ResNet about 40,000 less.

Only on the dataset with more sequences, the Deep ResNet performs well. This cor-
relates with the need of more information due to the larger parameter count. Due to
the reduced flexibility, the Split architecture can be interpreted as a “head start”. This
means, that the network has already information regarding the structure of the data,
which in turn does not need to be extracted from the data. This can result in a better
performance for smaller datasets.

All in all, the best results are always achieved by omitting the suggested regularization
methods. Nevertheless, the batch normalization had an effect on the learning rate and
needed training epochs: The learning rate is higher and less epochs are needed before
convergence.

8 Conclusion

Based on the ResNet, several architectures are evaluated for the task of shiptype classi-
fication. From the initial dataset based on AIS data with over 2.2 billion datapoints six
datasets with different trajectory length and preprocessing steps are derived. Further to
the kinematic information included in the dataset, geographical features are generated.

Each network architecture is evaluated with each of the datasets with and without
batch normalization and input noise. Overall the best result is an F1-Score of 0.920 with
the Shallow ResNet on the 360 samples per sequence dataset and a shift of the trajectories
to the origin. Additionally, we are able to show, that the inclusion of geographic features
yield an improvement in classification quality.

The achieved results are quite promising, but there is still some room for improve-
ment. First of all, the the sequence length used for this work might still be too long for
real world use cases. Therefore, shorter sequences should be tried. Additionally, inter-
polation for creating data with the same time delta between two samples or some kind
of embedding or alignment layer might yield better results. As there are many sources
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for additional domain related information, further research in the integration of these
sources is necessary.
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Abstract. This paper presents the results of a comparison of deep neural net-
works for detection of small objects typical for manual manufacturing tasks. We
created a set of training, validation and evaluation data and selected four state of
the art deep neural networks for object detection. We trained them with the same
number of epochs, 200 epochs per network architecture and compared the training
time, accuracy and prediction time on evaluation data. Additional we compared
the neural networks on thirty images of three very small and similar components.

Keywords: We would like to encourage you to list your keywords within the
abstract section

1 Use Case and Requirements

Many tasks which only a few years ago had to be performed by humans can now be
performed by robots or will be performed by robots in the near future. Nevertheless,
there are some tasks in assembly processes which cannot be automated in the next few
years. This applies especially to workpieces that are only produced in very small series
or tasks that require a lot of tact and sensitivity, such as inserting small screws into a
thread or assembling small components.

In conversations with companies we have found out that a big problem for the workers
is learning new production processes. This is currently done with instructions and by
supervisors. But this requires a lot of time. This effort can be significantly reduced
by modern systems, which accompany workers in the learning process. Such intelligent
systems require not only instructions that describe the target status and the individual
work steps that lead to it, but also information on the current status at the assembly
workstation. One way to obtain this information is to install cameras above the assembly
workstation and use image recognition to calculate where an object is located at any
given moment.

The individual parts, often very small compared to the work surface, must be reliably
detected. We have trained and tested several deep neural networks for this purpose.

We have developed an assembly workstation where work instructions can be projected
directly onto the work surface using a projector. At a distance, 21 containers for compo-
nents are arranged in three rows, slightly offset to the rear, one above the other. These
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containers can also be illuminated by the projector. Thus a very flexible Pick-by-Light
system can be implemented. In order for the system behind it to automatically switch
to the next work step and, in the event of errors, to point them out and provide support
in correcting them, it is helpful to be able to identify the individual components on the
work surface.

Fig. 1. Our assembly Workstation with a projector, a camera and 21 containers for the compo-
nents.

We use a RealSense depth camera for this purpose, from which, however, we are
currently only using the colour image. The camera is mounted in a central position at
a height of about two meters above the work surface. Thus the camera image includes
the complete working surface as well as the 21 containers and a small area next to the
working surface.

The objects to be detected are components of a kit for the construction of various toy
cars. The kit contains 25 components in total. Some of the components vary considerably
from each other, but some others are very similar to each other. Since it is the same with
real components of a production, the choice of the kit seemed appropriate for the purposes
of this project.
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2 Related Work

Object detection, one of the most fundamental and challenging problems in computer
vision, seeks to local object instances from a large number of predefined categories in
natural images.

Until the beginning of 2000, a similar approach was mostly used in object detection.
Keypoints in one or more images of a category were searched for automatically. At
these points a feature vector was generated. During the recognition process, keypoints
in the image were again searched, the corresponding feature vectors were generated and
compared with the stored feature vectors. After a certain threshold an object was assigned
to the category. One of the first approaches based on machine learning was published by
Viola and Jones in 2001 [1]. They still selected features, in their case they were selected
by using a Haar basis function [2] and then using a variant of AdaBoost [3].

Starting in 2012 with the publication of AlexNet by Krizhevsky et al. [4], deep neural
networks became more and more the standard in object detection tasks. They used a
convolutional neural network which has 60 million parameters in five convolutional layers,
some of them are followed by max-pooling layers, three fully-connected layers and a final
softmax layer. They won the ImageNet LSVRC-2012 competition with a error rate almost
half as high as the second best.

Inception-v2 is mostly identical to Inception-v3 by Szegedy et al. [5]. It is based on
Inception-v1 [6]. All Inception architectures are composed of dense modules. Instead of
stacking convolutional layers, they stack modules or blocks, within which are convolu-
tional layers. For Inception-v2 they redesigned the architecture of Inception-v1 to avoid
representational bottlenecks and have more efficient computations by using factorisation
methods. They are the first using batch normalisation in object detection tasks.

In previous architectures the most significant difference has been the increasing num-
ber of layers. But with the network depth increasing, accuracy gets saturated and then
degrades rapidly. Kaiming et al. [7] addressed this problem with ResNet using skip con-
nections, while building deeper models.

In 2017 Howard et al. presented MobileNet architecture [8]. MobileNet was developed
for efficient work on mobile devices with less computational power and is very fast. They
used depthwise convolutional layers for a extremely efficient network architecture.

One year later Sandler et al. [9] published a second version of MobileNet. Besides some
minor adjustments, a bottleneck was added in the convolutional layers, which further
reduced the dimensions of the convolutional layers. Thus a further increase in speed
could be achieved.

In addition to the neural network architectures presented so far, there are also dif-
ferent methods to detect in which area of the image the object is located. The two most
frequently used are described briefly below. To bypass the problem of selecting a huge
number of regions, Girshick et al. [10] proposed a method where they use selective search
by the features of the base CNN to extract just 2000 regions proposals from the image.
Liu et al. [11] introduced the Single Shot Multibox Detector (SSD). They added some ex-
tra feature layers behind the base model for detection of default boxes in different scales
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and aspect ratios. At prediction time, the network generates scores for the presence of
each object in each default box. Then it produces adjustments to the box to better match
the object shape.

There is just one publication over the past few years which gives an survey of generic
object detection methods. Liu et al. [12] compared 18 common object detection architec-
tures for generic object detection. There are many other comparisons of specific object
detection tasks. For example pedestrian detection [13], face detection [14] and text de-
tection [15].

3 Training Dataset

The project is based on the methodology of supervised learning. Thereby the models
are trained using a training dataset consisting of many samples. Each sample within
the training dataset is tagged with a so called label (also called annotation). The label
provides the model with information about the desired output for this sample. During
training, the output generated by the model is then compared to the desired output
(labels) and the error is determined. This error on the one hand gives information about
the current performance of the model and, on the other hand it is used for further mathe-
matical computations to adjust the model’s parameters, so that the model’s performance
improves.

For the training of neural networks in the field of computer vision the following rule of
thumb applies: The larger and more diverse the training dataset, the higher the accuracy
that can be achieved by the trained model. If you have too little data and/or run it
through the model too often, this can lead to so-called overfitting. Overfitting means
that instead of learning an abstract concept that can be applied to a variety of data, the
model basically memorizes the individual samples [16, 17]. If you train neural networks
for the purpose of this project from scratch, it is quite possible that you will need more
than 100,000 different images - depending on the accuracy that the model should finally
be able to achieve. However, the methodology of the so-called Transfer Learning offers
the possibility to transfer results of neural networks, which have already been trained for
a specific task, completely or partially to a new task and thus to save time and resources
[18]. For this reason, we also applied transfer learning methods within the project.

The training dataset was created manually: A tripod, a mobile phone camera (10
megapixel format 3104 x 3104) and an Apeman Action Cam (20 megapixel format
5120x3840) were used to take 97 images for each of the 25 classes. This corresponds
to 2,425 images in total (actually 100 images were taken per class, but only 97 were
suitable for use as training data). All images were documented and sorted into close-ups
(distance between camera and object less than or equal to 30 cm) and standards (dis-
tance between camera and object more than 30 cm). This procedure should ensure the
traceability and controllability of the data set. In total, the training data set contains
approx. 25% close-ups and approx. 75% standards, each taken on different backgrounds
and under different lighting conditions (see Fig. 2). The LabelImg tool was used for the
labelling of the data. With the help of this tool, bounding boxes, whose coordinates are
stored in either YOLO or Pascval VOC format, can be marked in the images [19].

For the training of the neural networks the created dataset was finally divided into:
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Fig. 2. An excerpt from the training data set - images of the component 32 064

– Training Data (90% of all labelled images): Images that are used for the training
of the models and that pass through the models multiple times during the training.

– Test Data (10% of all labelled images): Images that are used for later testing
or validation of the training results. In contrast to the images used as training data,
the model is presented these images for the first time after training. The goal of this
approach, which is common in Deep Learning, is to see how well the neural network
recognizes objects in images, that it has never seen before, after the training. Thus
it is possible to make a statement about the accuracy and to be able to meet any
further training needs that may arise.

4 Implementation

The training of deep neural networks is very demanding on resources due to the large
number of computations. Therefore, it is essential to use hardware with adequate per-
formance. Since the computations that run for each node in the graph can be highly
parallelized, the use of a powerful Graphical Processing Unit (GPU) is particularly suit-
able. A GPU with its several hundred computing cores has a clear advantage over a
current CPU with four to eight cores when processing parallel computing tasks [20].
These are the outline parameters of the project computer in use:

– Operating System (OS): Ubuntu 18.04.2 LTS
– GPU: GeForce R©GTX 1080 Ti (11 GB GDDR5X-Memory, data transfer speed 11

Gbit/s)

4.1 Selected Models

For the intended comparison the Tensorflow Object Detection API was used. Tensorflow
Object Detection API is an open source framework based on TensorFlow, which among
other things provides implementations of pre-trained object detection models for transfer
learning [21, 22]. The API was chosen because of its good and easy to understand docu-
mentation and its variety of pre-trained object detection models. For the comparison the
following models were selected:

– ssd mobilenet v1 coco:[11, 23, 24]
– ssd mobilenet v2 coco:[11, 25, 26]
– faster rcnn inception v2 coco:[27–29]
– rfcn resnet101 coco:[30–32]
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To ensure comparability of the networks, all of the selected pre-trained models were
trained on the COCO dataset [33]. Fundamentally, the algorithms based on CNN models
can be grouped into two main categories: region-based algorithms and one-stage algo-
rithms [34].

While both SSD models can be categorized as one-stage algorithms, Faster R-CNN
and R-FCN fall into the category of region-based algorithms. One-stage algorithms pre-
dict both - the fields (or the bounding boxes) and the class of the contained objects
- simultaneously. They are generally considered extremely fast, but are known for their
trade-off between accuracy and real-time processing speed. Region-based algorithms con-
sist of two parts: A special region proposal method and a classifier. Instead of splitting
the image into many small areas and then working with a large number of areas like con-
ventional CNN would proceed, the region-based algorithm first proposes a set of regions
of interest (ROI) in the image and checks whether one of these fields contains an ob-
ject. If an object is contained, the classifier classifies it [34]. Region-based algorithms are
generally considered as accurate, but also as slow. Since, according to our requirements,
both accuracy and speed are important, it seemed reasonable to compare models of both
categories.

4.2 Training Configuration

Besides the collection of pre-trained models for object detection, the Tensorflow Object
Detection API also offers corresponding configuration files for the training of each model.
Since these configurations have already shown to be successful, these files were used as
a basis for own configurations. The configuration files contain information about the
training parameters, such as the number of steps to be performed during training, the
image resizer to be used, the number of samples processed as a batch before the model
parameters are updated (batch size) and the number of classes which can be detected.

To make the study of the different networks as comparable as possible, the training of
all networks was configured in such a way that the number of images fed into the network
simultaneously (batch size) was kept as small as possible. Since the configurations of some
models did not allow batch sizes larger than one, but other models did not allow batch
sizes smaller than two, no general value for all models could be defined for this parameter.
During training, each of the training images should be passed through the net 200 times
(corresponds to 200 epochs). The number of steps was therefore adjusted accordingly,
depending on the batch size. If a fixed shape resizer was used in the base configurations,
two different dimensions of resizing (default: 300x300 pixels and custom: 512x512 pixels)
were selected for the training. Table 1 gives an overview of the training configurations
used for the training of the different models.

Table 1. Overview of different training runs, configurations and durations

Model Batch Size Steps Epochs
Image Resizer

Total Loss Training Duration
keep aspect ratio resizer

min dimension / max dimension
fixed shape resizer

height / width

ssd mobilenet v1 coco 2 217 500 200 - 512 / 512 5.759 11h 51m 45s

ssd mobilenet v1 coco 2 217 500 200 - 300 / 300 5.889 09h 45m 45s

ssd mobilenet v2 coco 2 217 500 200 - 512 / 512 3.289 12h 23m 49s

ssd mobilenet v2 coco 2 217 500 200 - 300 / 300 3.516 09h 41m 47s

faster rcnn inception v2 coco 1 435 000 200 600 / 1024 - 0.066 14h 35m 46s

rfcn resnet101 coco 1 435 000 200 600 / 1024 - 0.031 26h 39m 27s
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5 Evaluation

In this section we will first look at the training, before we then focus on evaluating the
quality of the results and the speed of the selected convolutional neural networks.

5.1 Training

When evaluating the training results, we first considered the duration that the neural
networks require for 200 epochs (see Fig. 3). It becomes clear that especially the two
Region Based Object Detectors (Faster R-CNN Inception V2 and RFCN Resnet101)
took significantly longer than the Single Shot Object Detectors (SSD Mobilenet V1 and
SSD Mobilenet V2). In addition, the Single Shot Object Detectors clearly show that the
size of the input data also has a decisive effect on the training duration: While SSD
Mobilenet V2 with an input data size of 300x300 pixels took the shortest time for the
training with 9 hours 41 minutes and 47 seconds, the same neural network with an input
data size of 512x512 pixels took almost three hours more for the training, but is still far
below the time required by RFCN Resnet101 for 200 epochs of training.

Fig. 3. The training duration for 200 epochs and two different input image sizes.

5.2 Quality of detection

The next point in which we compared the different networks was accuracy (see Fig. 4).
We focused on seeing which of the nets were correct in their detections and how often
(absolute values), and we also wanted to see what proportion of the total detections were
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correct (relative values). The latter seemed to us to make sense especially because some
of the nets showed more than three detections for a single object. The probability that
the correct classification will be found for the same object with more than one detection
is of course higher in this case than if only one detection per object is made. With regard
to the later use at the assembly table, however, it does not help us if the neural net
provides several possible interpretations for the classification of a component.

Figure 4 shows that, in this comparison, the two Region Based Object Detectors gen-
erally perform significantly better than the Single Shot Object Detectors - both in terms
of the correct detections and their share of the total detections. It is also noticeable that
for the Single Shot Object Detectors, the size of the input data also appears to have
an effect on the comparison point on the result. However, there is a clear difference to
the previous comparison of the required training durations: While the training duration
increased uniformly with increasing size of the images with the Single Shot Object De-
tectors, such a uniform observation cannot be made with the accuracy, concerning the
relation to the input data sizes. While SSD Mobilenet V2 achieves good results with an
input data size of 512x512 pixels, SSD Mobilenet V1 delivers the worst result of this com-
parison for the same input data size (regarding the number of correct detections as well
as their share of the total detections). With an input data size of 300x300 pixels, however,
the result improves with SSD Mobilenet V1, while the change to a smaller input data size
has a deteriorating effect on the result with SSD Mobilenet V2. The best result of this
comparison - judging by the absolute values - was achieved by Faster R-CNN Inception
V2. However, in terms of the proportion of correct detections in the total detections, the
Region Based Object Detector is two percentage points behind RFCN Resnet 101, also
a Region Based Object Detector.

Fig. 4. The accuracy of the CNNs we are looking at.

We were particularly interested in how neural networks would react to particularly
similar, small objects. Therefore, we decided to investigate the behavior of neural net-
works within the comparison using an example to illustrate the behavior of the three
very similar objects. Figure 5 shows the selected components for the experiment.
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Fig. 5. Very similar objects, which we
particularly looked at.

Fig. 6. Overview of the behaviour of
different neural networks when detect-
ing parts with strong similarity using
the example of detections in images of
part 31 981.

For each of these three components we examined how often it was correctly detected
and classified by the compared neural networks and how often the network misclassified it
with which of the similar components. The first and the second component was detected
in nearly all cases by both region based approaches. The classification by Inception-v2
and Resnet-101 failed in about one third of images. The SSD networks detected the
object in just one of twenty cases but Mobilenet classified this correct.

It has been surprising, that the results for the third component looks very different
to the others (see Fig. 6). SSD Mobilenet V1 correctly identified the component in seven
of ten images and did not produce any detections that could be interpreted as misclas-
sifications with one of the similar components. SSD Mobilenet V2 did not detect any of
the three components, as in the two previous investigations. The results of the two region
based object detectors are rather moderate. Faster R-CNN Inception V2 has detected
the correct component in four of ten images, but still five misclassifications with the
other two components. RFCN Resnet101 has caused many misclassifications with the
other two components. Only two of ten images were correctly detected but it had six
misclassifications with the similar components.

An other important aspect of the study is the speed, or rather the speed at which the
neural networks can detect objects, especially with regard to later use at the assembly
table. For the comparison of the speeds on the one hand the data of the GitHub repository
of the TensorFlow Object Detection API for the individual neural nets were used, on the
other hand the actual speeds of the neural nets within this project were measured. It
becomes clear that the speeds measured in the project are clearly below the achievable
speeds that are mentioned in the GitHub repository of the TensorFlow Object-Detection
API. On the other hand, the differences between the speeds of the Region Based Object
Detectors and the Single Shot Object Detectors in the project are far less drastic than
expected.

6 Conclusions

We have created a training dataset with small, partly very similar components. With
this we have trained four common deep neural networks. In addition to the training
times, we examined the accuracy and the recognition time with general evaluation data.
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In addition, we examined the results for ten images each of three very similar and small
components.

None of the networks we trained produced suitable results for our scenario. Never-
theless, we were able to gain some important insights from the results. At the moment,
the runtime is not yet suitable for our scenario, but it is also not far from the minimum
requirements, so that these can easily be achieved with smaller optimizations and better
hardware. It was also important to realize that there are no serious runtime differences
between the different network architectures.

The two region based approaches delivered significantly better results than the SSD
approaches. However, the results of the detection of the third small component suggest
that Mobilenet in combination with a faster R-CNN could possibly deliver even better
results. Longer training and training data better adapted to the intended use could also
significantly improve the results of the object detectors.
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Abstract. In this contribution, we propose an system setup for the detection and
classification of objects in autonomous driving applications. The recognition algo-
rithm is based upon deep neural networks, operating in the 2D image domain. The
results are combined with data of a stereo camera system to finally incorporate
the 3D object information into our mapping framework. The detection system
is locally running upon the onboard CPU of the vehicle. Several network archi-
tectures are implemented and evaluated with respect to accuracy and run-time
demands for the given camera and hardware setup.

Keywords: Deep neural networks, autonomous driving, optical recognition, sys-
tem setup

1 Introduction

Team Schluckspecht from Offenburg University of Applied Sciences is a very successful
participant of the Shell Eco Marathon [1]. In this contest, student groups are to design
and build their own vehicles with the aim of low energy consumption. Since 2018 the
event features the additional autonomous driving contest.

In this area, the vehicle has to fulfill several tasks, like driving a parcour, stopping
within a defined parking space or circumvent obstacles, autonomously.

For the upcoming season, the Schluckspecht V car of the so called urban concept
class has to be augmented with the according hardware and software to reliably recog-
nize (i. e. detect and classify) possible obstacles and incorporate them into the software
framework for further planning.

In this contribution we describe the additional components in hard- and software that
are necessary to allow an opitcal 3D object detection. Main criteria are accuracy, cost
effectiveness, computational complexity for relative real time performance and ease of use
with regard to incorporation in the existing software framework and possible extensibility.

This paper consists of the following sections. At first, the Schluckspecht V system is
described in terms of hard- and software components for autonomous driving and the
additional parts for the visual object recognition. The second part scrutinizes the object
recognition pipeline. Therefore, software frameworks, neural network architecture and
final data fusion in a global map is depicted in detail. The contribution closes with an
evaluation of the object recognition results and conclusions.

2 System Setup

2.1 Schluckspecht Car

The Schluckspecht V is a self designed and self build vehicle according to the requirements
of the Eco Marathon rules. The vehicle is depicted in Figure 1.
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Fig. 1. Schluckspecht V energy efficient vehicle in urban concept class.

The main features are the relatively large size, including driver cabin, motor area
and a large trunk, a fully equipped lighting system and two doors that can be opened
separately.

For the autonomous driving challenges, the vehicle is additionally equipped with sev-
eral essential parts, that are divided into hardware, consisting of actuators, sensors, com-
putational hardware and communication controllers. The software is based on a middle
ware, CAN-Open communication layers, localization, mapping and path planning algo-
rithms that are embedded into a high level state machine.

2.2 Autonomous Driving Hardware

Actuators The car is equipped with two actors, one for steering and one for braking.
Each actor is paired with sensors for measuring steering angle and braking pressure.

Environmental Sensors Several sensors are needed for localization and mapping.
Backbone is a multilayer 3D laser scanning system (LiDAR), which is combined with an
inertial navigation system that consists of accelerometers, gyroscopes and magnetic field
sensors all realized as triads. Odometry information is provided from a global navigation
satellite system (GNSS) and two wheel encoders.

Communication Controller The communication is based on two separate CAN-Bus-
Systems, one for basic operations and an additional one for the autonomous functions.
The hardware CAN nodes are designed and build from the team coupling USB-, I2C-,
SPI- and CAN-Open-Interfaces. Messages are send from the central processing unit or
the driver depending on drive mode.

Central Computing Unit The trunk of the car is equipped with an industrial grade
high performance CPU and an additional graphics processing unit (GPU). CAN commu-
nication is ensured with an internal card, remote access is possible via generic wireless
components.

2.3 Software

Software Structure The Schluckspecht uses a modular software system consisting of
several basic modules that are activated and combined within a high level state ma-
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chine as needed. An overview of the main modules and possible sensors and actuators is
depicted in Figure 2

Fig. 2. Software modules and component structure overview for autonomous driving.

Localization and Mapping The Schluckspecht V is running a simultaneous localiza-
tion and mapping (SLAM) framework for navigation, mission planning and environment
representation. In its current version we use a graph based SLAM approach based upon
the cartographer framework developed by Google [2]. We calculate a dynamic occupancy
grid map that can be used for further planning. Sensor data is provided by the LiDAR,
inertial navigation and odometry systems. An example of a drivable map is shown in
Figure 3. This kind of map is also used as base for the localization and placement of the
later detected obstacles.

The maps are accurate to roughly 20 centimeters, providing relative localization to-
wards obstacles or homing regions.

Path Planning To make use of the SLAM created maps, an additional module calcu-
lates the motion commands from start to target pose of the car. The Schluckspecht is
a classical car like mobile system which means that the path planning must take into
account the non holonomic kind of permitted movement. Parking maneuvers, close by
driving on obstacles or planning a trajectory between given points is realized as a com-
bination of local control commands based upon modeled vehicle dynamics, the so called
local planner, and optimization algorithms that find the globally most cost efficient path
given a cost function, the so called global planner. We employ a kinodynamic strategy, the
elastic band method presented in [3], for the local planning. Global planning is realized
with a variant of the A* algorithm as described in [4].

Middleware and Communication All submodules, namely, localization, mapping,
path planning and high-level state machines for each competition are implemented within
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Fig. 3. Exemplary occupancy grid map of the Offenburg test track, based on LiDAR, inertial
and odometry sensors.

the robot operating system (ROS) middleware [5]. ROS provides a messaging system based
upon the subscriber/publisher principle. The single modules are capsuled in a process,
called node, capable to asynchronously exchange messages as needed. Due to its open
source character and an abundance on drivers and helper functions, ROS provides addi-
tional features like hardware abstraction, device drivers, visualization and data storage.
Data structures for mobile robotic systems, e. g. static and dynamic maps or velocity
control messages, allow for rapid development.

2.4 3D Object Recognition

The LiDAR sensor system has four rays, enabling only the incorporation of walls and
track delimiters within a map. Therefore, a stereo camera system is additionally imple-
mented to allow for object detection of persons, other cars, traffic signs or visual parking
space delimiters and simultaneously measure the distance of any environmental objects.

Camera Hardware A ZED-stereo-camera system is installed upon the car and incor-
porated into the ROS framework. The system provides a color image streams for each
camera and a depth map from stereo vision. The camera images are calibrated to each
other and towards the depth information. The algorithms for disparity estimation are
running around 50 frames per second making use of the provided GPU.

Software Framework The object recognition relies on deep neural networks. To seam-
lessly work with the other software parts and for easy integration, the networks are
evaluated with tensorflow [6] and pyTorch [7] frameworks. Both are connected to ROS
via the openCV image formats providing ROS-nodes and -topics for visualization and
further processing.

3 Optical Object Recognition

The object recognition pipeline relies on a combination of mono camera images and
calibrated depth information to determine object and position. Core algorithm is a deep
learning approach with convolutional neural networks.
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3.1 Deep Convolutional Networks

Main contribution of this paper is the incorporation of a deep neural network object
detector into our framework. Object detection with deep neural networks can be subdi-
vided into two approaches, one being a two step approach, where regions of interest are
identified in a first step and classified in a second one. The second are so called single shot
detectors (like[8]), that extract and classify the objects in one network run. Therefore,
two network architectures are evaluated, namely YOLOv3 [9] as a single shot approach
and Faster R-CNN [10] as two step model. All are trained on public data sets and fine
tuned to our setting by incorporating training images from the Schluckspecht V in the
ZED image format.

The models are pre-selected due to their real time capability in combination with the
expected classification performance. This excludes the current best instance segmenta-
tion network Mask R-CNN [11] due to computational burdens and fast but inaccurate
networks based on the mobileNet backbone [12]. The class count is adapted for the con-
test, in the given case eight classes, including the relevant pedestrian, car, van, tram and
cyclist.

3.2 Architectures and Training

For this paper, the two chosen network architectures were trained in their respective
framework, i. e. darknet for the YOLOv3 detector and tensorflow for the Faster R-CNN
detector. YOLOv3 is used in its standard form with the Darknet 53 backbone, Faster
R-CNN is designed with the ResNet 101 [13] backbone.

The models were trained on local hardware with the KITTI [14] data set. Alterna-
tively, an open source data set from the teaching company udacity, with only three classes
(truck, car, pedestrian) was tested.

To deal with the problem of domain adaptation, the training images for YOLOv3
were pre-processed to fit the aspect ratio of the ZED camera. The Faster R-CNN net can
cope with ratio variations as it uses a two stage approach for detection based on regions
of interest pooling.

Both networks were trained and stored. Afterward, their are incorporated into the
system via a ROS node making use of standard python libraries.

3.3 Information Fusion within Dynamic Map

The detector output is represented by several labeled bounding boxes within the 2D
image. Three dimensional information is extracted from the associated depth map by
calculating the center of gravity of each box to get a x and y coordinate within the
image. Interpolating the depth map pixels accordingly one gets the distance coordinate
z from the depth map to determine the object position p(x, y, z) in the stereo camera
coordinate system.

The ease of projection between dieeferent coordinate systems is one reason to use the
ROS middleware. The complete vehicle is modeled in a so calle tranform tree (tf-tree),
that allows the direct interpolation between different coordinate systems in all six spatial
degrees of freedom.

The dynamic map, created in the SLAM subsystem, is now augmented with the
current obstacles in the car coordinate system. The local path planner can take these
into account and plan a trajectory including kinodynamic constraints to prevent collision
or initiate a breaking maneuver.
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4 Evaluation and Results

4.1 Training set evaluation

Both newly trained networks were first evaluated upon the training data. Exemplary
results for the KITTI data set are shown in Figure 4.

Fig. 4. Exemplary results for the object detectors on two KITTI images. YOLOv3 is in the
upper half, Faster R-CNN in the lower half (The image was cut to enlarge results).

The results clearly indicate an advantage for the YOLOv3 system, both in speed and
accuracy. The Figure depicts good results for occlusions (e. g. the car on the upper right)
or high object count (see the black car on the lower left as example). The evaluation on a
desktop system showed 50 fps for YOLOv3 and approximately 10 fps for Faster R-CNN.

4.2 ZED camera system evaluation

After validating the performance upon the training data, both networks were started as
a ROS node and tested upon real data of the Schluckspecht vehicle.

Table 1. Qualitative comparison of detection architectures.

Architecture Frame rate [fps] Detection quality Quality w.r.t. size
Vehicles Pedestrians large objects small objects

YOLOv3 9 – 10 ++ – + +
Faster R-CNN 4 – 5 ++ + ++ –

As the training data differs from the ZED-camera images in format and resolution,
several adaptions were necessary for the YOLOv3 detector. The images are cropped in
real time before presented to the neural net to emulate the format of the training images.
The R-CNN like two stage networks are directly connected to the ZED node.

The test data is not labeled as ground truth. It is therefore not possible to give
quantitative results for the recognition task. Table 1 gives a quantitative overview of
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the object detection and classification, the subsequent Figures give some expression of
exemplary results.

The evaluation on the Schluckspecht videos showed an advantage for the YOLOv3
network. Main reason is the faster computation, which results in a frame rate nearly
twice as high compared to two stage detectors. In addition, the recognition of objects in
the distance, i. e. smaller objects is a strong point of YOLO. The closer the camera gets,
the bigger is the balance shift towards Faster R-CNN, that outperforms YOLO on all
categories for larger objects.

Fig. 5. Exemplary results for the object detectors on real Schluckspecht images (Persons colored
cyan, cars green).

Figure 5 shows results from the YOLO-detector for a mixture of persons and cars.
What becomes apparent is a maximum detection distance of approximately 30 meters,
from which on cars become to small in size. Figure 6 shows an additional result demon-
strating the detection power for partially obstructed objects.

Another interesting finding was the capability of the networks to generalize. Faster
R-CNN copes much better with new object instances than YOLOv3. Persons with so
far unknown cloth color or darker areas with vehicles remain a problem for YOLO, but
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Fig. 6. Exemplary results for the object detectors on real Schluckspecht images.

commonly not for the R-CNN. The domain transfer from training data in Berkeley and
KITTI to real ZED vehicle images proved problematic.

5 Conclusions

This contribution describes an optical object recognition system in hard- and software
for the application in autonomous driving under restricted conditions, within the Shell
Eco Marathon competition. An overall overview of the system and the incorporation of
the detector within the framework is given.

Main focus was the evaluation and implementation of several neural network detec-
tors, namely YOLOv3 as one shot detector and Faster R-CNN as a two step detector,
and their combination with distance information to gain a three dimensional information
for detected objects. For the given application, the advantage clearly lies with YOLOv3.
Especially the achievable frame rate of minimum 10 Hz allows a seamless integration into
the localization and mapping framework. Given the velocities and map update rate, the
object recognition and integration via sensor fusion for path planning and navigation
works in quasi real-time.

For future applications we plan to further increase the detection quality by incor-
porating new classes and modern object detector frameworks like M2Det [15]. This will
additionally increase frame rate and bounding box quality. For more complex tasks, the
data of the 3D-LiDAR system shall be directly incorporated into the fusion framework
to enhance the perception of object boundaries and object velocities.
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