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Abstract. Road surface classification of bike paths enables image recognition applications 
for bike route planning, navigation optimization or path maintenance. However, acquiring 
and annotating real data can be costly and time-consuming. Synthetic data can overcome 
data scarcity and annotation costs. We use synthetic data, generated by Stable Diffusion to 
improve neural network performance on new or unseen surfaces. We compare model 
performance for different real-synthetic data ratios. Our results show that synthetic data 
decreases the amount real data needed and improves neural network performance in road 
surface classification on new surfaces. 
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1 Introduction 

We analyze road surface classification in the context of an image recognition application that 
supports bike route planning, navigation optimization, path maintenance, and traffic safety 
(Baier et al., 2023). A challenge for the system is the classification of unseen road or path 
surfaces, as acquiring and annotating large-scale, diverse, and accurately labeled real data can 
be costly and time-consuming. Synthetic data is artificially generated data that mimics the 
characteristics of the real-world and offers a potential solution to address the limitations of data 
availability and annotation efforts. Unseen path surfaces are surfaces that are not present in the 
training data but appear in the real world. For example, a surface classifier trained on asphalt, 
concrete, and gravel may encounter difficulties to classify images of bricks, snow, other gravel 
types or lightings conditions which diverge from the images present in the training data resulting 
in a poor performance of the classifier. A possible solution to this problem is to enhance new 
path surfaces with synthetic images which cover a wider range of surfaces variations to improve 
the generalization and robustness of the classifier (He et al., 2023; Lu et al., 2023). 

2 Related Work 

Bike path surface classification is a task of identifying the type or condition of road surfaces 
captured from images, videos or other sensors (e.g. Heidt and Dorer, 2021). Baier et al. (2023) 
proposed an approach for automatic analysis of bike paths. They used a convolutional neural 
network (CNN) to detect and classify road surfaces from camera images. Our work shares the 
experimental setup, however, they did not consider the use of synthetic data. Several methods 
have been proposed for synthetic image generation, such as generative adversarial networks 
(GANs) (Goodfellow et al., 2014) or latent diffusion models (LDMs) such as Stable Diffusion 
(Rombach et al., 2022). The general  
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potential of using synthetic data from diffusion models has been shown by (Azizi et al., 2023) 
ImageNet data. In our work we use Stable Diffusion in the use case of path surface classification. 
We are focusing on easing the addition of new surfaces to a classification system for path 
surfaces, by expanding small real-world data samples with synthetic data.  

3 Experiment Design and Results 

We tested the hypothesis that synthetic data can enhance the training for new bike paths, in 
particular with a small number of real images. We compare the performance of two CNNs: one 
trained on real data and other ones trained on real data plus synthetic data. We evaluate both 
types on a new bike path dataset. We test different numbers of real images as basis for synthetic 
data, ranging from 0 to 10 per class, and analyze the performance gain through synthetic data. 
We collected a new bike path dataset similar to Baier et al., (2023). The dataset contained 4 
different paths with 300 images per path, for a total of 1200 real images. For 10 real images of 
the new dataset, we generate 400 synthetic variations for each image using the common Stable 
Diffusion image-to-image 768-v-ema (Rombach et al., 2022) method. We use input prompts 
(“photo of a paved path, concrete, asphalt, Canon EOS R3”) and a negative prompt (“painting, 
digital art”) to match the variations of the real data samples. Figure 1 shows examples. Note that 
we do not evaluate how realistic the synthetic images are. Rather we focus on the improvement 
of synthetic images on model performance. We constructed 6 training sets (referred to as “real”) 
with each class containing exactly 0, 2, 4, 6, 8 or 10 real new bike path images in addition to the 
original data set (20444 samples). Further, we created 6 additional data sets by adding the 
corresponding synthetic images for each real image (referred to as “enhanced”). For example, 
for 2 real world images per class we added all synthetic variations resulting in 22048 images 
(20444 original samples +2⋅2 real world images +1600 synthetic images) in total. As a common 

Figure 1. “Original and Synthetic Data”: Examples of input-image and generated synthetic images. 
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Figure 2. “Performance Synthetic Enhanced vs Real Data”: CNNs trained on synthetic enhanced 
(enha.) and on purely real data (real) with number of real images used (# real images). Reported f1-

scores: (a) macro, (b) micro, (c) weighted. The comparison of performances shows the synthetic 
enhanced outperforms the CNNs trained on real data only. 
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CNN architecture we use one augmentation layer, three convolutional layers with ReLu 
activation and max-pooling layer, a dropout and two fully connected layers. The augmentation 
involves random horizontal flipping, zooming and change in brightness. We trained the CNN 
with subsequent settings: 25 epochs, batch size 32, learning rate of 0.001, sparse cross-entropy 
loss, Adam-optimizer and accuracy as metric. For evaluation we used the model with the best 
validation loss. We trained the CNN on the original training dataset and evaluated it on the test 
set of the original dataset achieving an f1-score of 0.97. However, on the test set of the new bike 
path data, the f1 dropped to 0.83, showing that the CNN trained on the original dataset performs 
worse on the new bike paths. To test our hypothesis, we trained the CNN on the remaining final 
real world and synthetic enhanced datasets and compare the performance on the new bike path 
test set. We repeated the experiment 10 times. The results are visualized in Figure 2 which shows 
the boxplots of the weighted, macro and micro scores of f1 versus the amount of real data needed 
for different models on the bike path test set. Here, we only discuss the micro f1-score for 
simplicity. The classifiers trained on synthetic enhanced data outperform those trained on real 
data only (see Figure 2). The positive effect of synthetic data increases with the number of real 
images used. For example, with 2 real images the median f1 are 0.868 (real data) and 0.875 
(enhanced data) compared to 10 images with 0.873 (real data) and 0.91 (enhanced data). We 
further verified the performance on the original test set during the experiments which showed 
only small variations of about an f1-score of 0.97 for all trained classifiers. 

4 Discussion and Conclusion 

We generate synthetic data for bike path surface classification using diffusion models. We 
compared two CNNs trained on real data and real data plus synthetic data and evaluated them 
on a new bike path dataset. We showed that enhancing real path images with synthetic data 
improves the classifier performance and therefore can enhance training for new bike paths 
surfaces. Our work has some limitations and challenges for future work. First, our synthetic data 
generation method relies on text prompts and model parameters, which may be subject to further 
optimization. E.g., the generated asphalted paths could be improved using other inputs. Second, 
our experiment was conducted on a small dataset of bike path images, which may limit the 
generalization and robustness. However, our work showed a promising approach, demonstrating 
the of use synthetic data to improve the CNN performance, especially on new surfaces. 
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