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Abstract. Machine learning (ML) models are increasingly used for predictive
tasks, yet traditional data-based models relying on expert knowledge remain
prevalent. This paper examines the enhancement of an expert model for thermo-
mechanical fatigue (TMF) life prediction of turbine components using ML. Using
explainable artificial intelligence (XAI) methods such as Permutation Feature Im-
portance (PFI) and SHAP values, we analyzed the patterns and relationships
learned by the ML models. Our findings reveal that ML models can be trained
on TMF data, but integrating domain knowledge remains crucial. The study con-
cludes with a proposal to further refine the expert model using insights gained
from ML models, aiming for a synergistic improvement.
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1 Introduction

Predictive models using machine learning (ML) are increasingly applied across various
fields. At the same time, data-based models themselves are not new in many of these
areas. There are already models that have been manually created by experts using domain
knowledge and, where necessary, adapted to the available data using statistical methods.
Both approaches have their pros and cons. ML models have the advantage of uncovering
unknown relationships, but they can also inherit data biases, especially with limited
training data. Expert models, on the other hand, have the advantage that they can be
based on known and proven correlations.
This paper explores improving a TMF expert model with an ML model by training

it on data of the turbine-blade nickelbase superalloy MAR-M247. We evaluate the ML
models using explainable artificial intelligence (XAI) and exploratory data analysis to
understand the patterns and relationships it learns, aiming to improve the expert model
effectively, thus combining the strengths and weaknesses of both approaches.
This work differs from related previous work in that the focus is not on training the

best possible ML model (see e.g. [1,2,3]), but on gaining new insights by comparing the
approaches of the expert model and the ML model.

2 Domain background

High-temperature turbine components are exposed to start-up and shut-down cycles
in which the material experiences high thermal and mechanical loadings. These cyclic
loadings result in a progressive damage of the material and after a certain number of

21



cycles to failure of the material. Different mechanisms are responsible for damage as
fatigue crack growth (fatigue damage) that can be enhanced by creep of the material
at higher temperatures (creep damage). For the assessment of the life of the turbine
components, a model is required that allows engineers to predict the number of such
start-up and shut-down cycles that the component can be used without failure. The
number of cycles to failure Nf is the key result of models for TMF life assessment.
For the development of a TMF model and the fitting of the model to a certain

material, different material tests are performed in which material specimens are cycled
to failure using different load conditions, respectively. In isothermal low-cycle fatigue
(LCF) tests, the specimens are exposed to constant amplitude cyclic mechanical loads at
constant temperature, so that Nf is measured for different mechanical strain ranges and
operation-relevant temperatures. In TMF tests, constant amplitude cyclic mechanical
as well as cyclic thermal loads are applied to the specimen. Beside different mechanical
strain and temperature ranges, different phase angle between the mechanical strain and
the temperature are considered in the tests, since contributions of fatigue and creep
damage and, thus, Nf strongly depends on the applied stress-temperature history the
material is exposed to. In both tests, LCF and TMF, hold times at maximum load are
often introduced as well. Since these material tests are time-consuming and expensive,
usually the number of tests is rather small considering the number of factors influencing
the TMF life.
Different features can be evaluated from the data of each test and used to generate

a correlation to the number of cycles to failure Nf. We divide the available features
into two categories: simple features and expert features (Table 1). Simple features are
features that do not require any domain knowledge to create. They are either direct
measurement results or simple combinations of features such as ratios or differences.
The simple features include, for example, the maximum and minimum mechanical strain
and the resulting mechanical strain range as well as maximum, minimum stress and the
resulting stress range and stress ratio. When creating expert features, on the other hand,
domain knowledge is required or additional information is included that is not part of
the simple features.
In this work, a fracture-mechanics based model for TMF life prediction is considered

that provides expert features. The first expert feature is the damage parameter, e.g. [4,5],

DTMF = 1.45
∆σ2eff
σCYE

+ 2.4
∆σ∆εp

σCY
√
1 + 3n�

Fcreep (1)

that includes besides the simple features also elastic, plastic and creep properties of the
material (Table 1) and that allows the contributions of fatigue and creep damage to Nf to
be evaluated. The effective stress range ∆σeff is depending on the stress ratio R according
to the empirical equation [6],

∆σeff = 0.35+ (2.2−R)−2 ∆σ, (2)

and the function controlling creep damage Fcreep ≥ 1 is a function of the stress-temperature
history in the loading cycle. Using a fatigue crack growth law, the correlation

Nf =
A

DBTMF
(3)

can be derived. The parameters A and B are fitted based on experimental data. This
results in a linear relation in log10 − log10 scale:

log10 (Nf) = log10 (A)−B log10 (DTMF) (4)
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In the following, we refer to this calculation of Nf as the expert model or DTMF regressor.
Further expert features are the damage portions due to fatigue (0 ≤ Dfat ≤ 1) and creep
(0 ≤ Dcreep ≤ 1) adding up to a final damage of 1, i.e. Dfat +Dcreep = 1. The latter is
excluded because it is 100% correlated to Dfat in the data.

Feature Type Name Further information

maximum mechanical strain εmax simple MeStrainMax
minimum mechanical strain εmin simple MeStrainMin
maximum stress σmax simple StressMax
minimum stress σmin simple StressMin
stress range ∆σ simple DeltaStress ∆σ = σmax − σmin
stress ratio R simple R R = σmin/σmax
plastic strain range ∆εp simple DeltaPlStrain ∆εp = εpmax − εpmin

εp = ε− σ/E
maximum temperature Tmax simple TempMax
minimum temperature Tmin simple TempMin
hold time thold simple HoldTime at maximum stress in LCF tests

or temperature in TMF tests
heat time theat simple HeatTime in TMF tests (0 s in LCF tests)
phase angle φ simple PhaseFactor phase shift of cyclic mechanical

and thermal load in TMF tests

damage parameter DTMF expert DTMF includes simple features
and material properties

damage portion due to fatigue Dfat expert Dfat Dfat = Nf,fat/Nf = 1/F
B
creep

Young’s modulus E expert E elastic property
cyclic yield stress σCy expert SigmaCY plastic property
cyclic hardening exponent n expert ROHardCy plastic property

Table 1: Used features; Nf,fat indicates the calculated fatigue life neglecting creep damage
(Fcreep = 1)

The DTMF model contains only a low number of material properties to be determined
on the basis of experimental data. To this end, fatigue tests at different strain amplitudes
and different temperatures are required and additionally some fatigue tests including hold
times are necessary to calibrate the creep-function Fcreep. Basically, the properties for a
certain material can be determined based on a set of approx. 25 fatigue tests. The material
properties of the DTMF model for the nickel-base superalloy MAR-M247, determined on
the basis for 22 test, are available from [6]. For this paper, available data for MAR-M247
from 12 literature sources (research reports and scientific papers, see Acknowledgement)
is used. This database comprises 185 isothermal LCF tests and 117 TMF tests, both in the
temperature range between 20 and 1150 ◦C and for mechanical strain ranges from 0.0007
to 0.014. The number of cycles to failure are in the range from 17 to 1 820 000 cycles.
The fatigue life data is complemented by stress-strain data which is obtained for all tests
using a time- and temperature-dependent plasticity model calibrated to MAR-M247 [6].

3 Can a ML model learn the relationships from the data?

In order to answer the question of whether and how well ML is able to recognize the
correlations in the data, various ML models were trained on the data. Among others,
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ensemble methods such as Random Forest (RF), AdaBoost and XGBoost were tested,
but also classic ML methods such as a Support Vector Regression (SVR), Decision Trees,
Linear Regression or a K-Nearest-Neighbor (kNN) approach. Only a small multilayer
perceptron (MLP) could be used as a neural network, as there was not enough training
data available for a deep learning approach. All learning algorithms received scaled data.
All prediction results (whether generated by the DTMF regressor or an ML model) were
post-processed so that values < 1 are set to 1. This procedure takes into account the fact
that there can be no negative lifetime, but also ensures that the logarithm in the error
function can be calculated (see below).
The evaluation was carried out with a 5-fold cross-validation in which the logarithmic

Root Mean Squared Error (RMSL10E) was used as the evaluation measure:

RMSL10E =
i

(log10(Nfi)− log10(N̂fi))2 (5)

where Nfi represents the number of cycles to failure of data instance i as measured in
the experiment and N̂fi is its corresponding predicted value. The reason for choosing a
logarithmic error measure is that, from a domain perspective, the error factor is more
important than the absolute value of the error. This is also the reason why we train all
ML models on predicting the logarithm of the number of cycles to failure rather than
the number of cycles to failure directly.
The DTMF regressor achieves an RMSL10E score of 0.496 when the material proper-

ties given in [6] are applied to the data of all literature sources. All, or when using simple
features all but two ML-based approaches, were able to achieve better results than the
DTMF regressor. For all further analyses, we will work with the RF (expert features: 0.292
/ simple features: 0.297) and the SVR (0.324 / 0.333) which were the best approaches
for both the expert features and the simple features. From this initial experiment, it can
be concluded that it is possible to train a machine learning model on the data of all
literature sources even if expert knowledge has not already been incorporated into the
ML model via the features provided.

4 Exploration of the ML models with methods of XAI

Our goal is to examine whether the existing expert model can be further improved by
exploring the patterns and relationships found by the data-based models in the data.
Such analysis could lead to a deeper understanding of the problem and thus also advance
development and research in this area. In the following, two methods of Explainable
Artificial Intelligence (XAI) are used to make the functionality of the MLmodel generated
by the RF transparent. Where necessary, additional exploratory analyses are carried out
to gain an even better understanding of the existing relationships or to verify or falsify
assumptions made with the help of the XAI methods.

4.1 XAI method 1: Permutation Feature Importance

Permutation Feature Importance (PFI) is a model-agnostic, global XAI technique. It
measures the contribution of a feature to the performance of a model. This value is de-
termined as follows: For a single feature, the values observed in the dataset are randomly
swapped. The model is then queried with the new instances created in this way. The
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performance achieved is compared with the performance achieved on the unchanged in-
stances. If the score hardly changes, this indicates that the feature was not important for
the model’s decision. Conversely, a significant deterioration in the prediction means that
the model relies on this feature [7]. Note that PFI is not a feature selection method. It
does not judge the predictive power of a feature for the task, but rather measures how
important the feature is for the particular model being analyzed. When interpreting the
results, it must be considered that unrealistic data instances can be created in the per-
mutation step if feature dependencies exist. Moreover, the presence of correlated features
may result in the observed importance being distributed among multiple features, which
can prove challenging to interpret [8].

Figure 1 shows the results of the PFI for the models that were calculated on simple
features. For the RF model, the feature DeltaPlStrain is by far the most important. It
is followed by StressMin and - again at a distance - MeStrainMax and HeatTime. In
case of the SVR, TempMax is reported as most important feature followed by StressMin,
MeStrainMin and DeltaPlStrain. The notable discrepancies in the relative significance of
the features between the SVR and RFmodels can be attributed to the inherent differences
in their learning algorithms. While the RF model employs an iterative, greedy approach,
considering each feature independently, the SVR model adopts a more comprehensive,
global perspective on the data.

From a domain perspective, the importance of features representing the plastic and
mechanical strain range is understandable. In simple fatigue life prediction models, these
features are applied as in the Coffin-Manson model that correlates the plastic strain range
(DeltaPlStrain) with the number of cycles to failure or the Coffin-Manson-Basquin model
that correlates the mechanical strain range (DeltaMeStrain) with the number of cycles to
failure. While these simple models result in a good description of isothermal lower tem-
perature data, additional information is required to account for temperature-dependency.
With the further important features, namely the minimum stress (StressMin) and the
maximum temperature (TempMax ), the ML model seems to acquire information on
temperature-dependency. The lower the absolute value of the minimum stress, the higher
the temperature at minimum stress.

For the RF model based on expert features (see Figure 2), DTMF is by far the most
important feature. It is followed at a far distance by Dfat, StressMin and R. In case of
the SVR model, Dfat is reported as most important feature, tightly followed by DTMF
and at some distance again StressMin.

From a domain perspective it is not surprising that the features related to the dam-
age parameter and the damage mechanisms are considered important. DTMF is seen as
particularly important showing that expert knowledge has actually been used to create
a feature that has a high information content with regard to the TMF life prediction.
The damage portion due to fatigue (Dfat) is also important. For the RF, the PFI plot
almost gives the impression that DTMF alone is sufficient for the prediction. However,
additional experiments showed that it is not possible to achieve good results with a RF
model if only the DTMF value is provided. Still it can be concluded that the RF considers
it a very important feature.

Again, the minimum stress (StressMin) appears as an important feature. This is
interesting from a domain perspective, as the stress information is already considered
in the DTMF feature (which is the basis for the expert model) via the stress range
(DeltaStress) ∆σ = σmax − σmin and the stress ratio (R) R = σmin/σmax.
None of the ML model considers the hold time (HoldTime) as important feature.

Hence, effects of hold times, i.e. reduced life with longer hold times at higher temperatures
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due to creep damage, are not described. Indeed, only around 5% of the tests in the
experimental database contain hold times that show an effect in the fatigue live. While
for the calibration of the expert model only a few (a minimum of two) tests with different
hold times affecting the number of cycles to failure is required, modelling with ML may
require more information for a reasonable description of the data. Hence, the training
of the ML model requires a database with different tests than what is required for the
calibration of the expert model. For the calibration of the ML model more tests with
hold time are necessary such that the hold time becomes an important feature.

Fig. 1: Permutation Feature Importance (test data), Simple Features

4.2 XAI method 2: SHAP (SHapley Additive exPlanations) values

SHAP is an approximation method for calculating Shapely values. The methodology
for calculating Shapely values has its origins in the field of game theory. The aim of the
method is to determine the contribution of each player to the overall result. When applied
to an ML model, the goal is to measure the contribution of each feature to the deviation
of the predicted value from the expected value. In a regression task, the expected value
is the average value of the target variable in the training data set [9].
To estimate the contribution of a feature to the overall result, a new model is trained

for each possible subset of features. The deviation of the prediction quality with and
without the feature gives an indication of its importance and, as a weighted sum of the
marginal contributions, gives the contribution of the respective feature for the instance
under consideration [9].
Since calculating Shapely values is a very computationally intensive process, several

approximation methods have been developed to speed it up. We used KernelSHAP for
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Fig. 3: SHAP beeswarm plot, SVR (test data), Simple Features

The SHAP plot for the expert features (not shown) did not provide additional insights
and is therefore not shown here.

5 Conclusion

In summary, it can be said that the ML models were able to represent the data well.
The analysis with the XAI methods showed that many of the relationships that the
ML models detected are plausible from a domain perspective. Where this was not the
case, this could often be explained by the fact that there was a bias in the data, as the
experiments did not cover all possible cases or at least did not provide sufficient data
for all cases. One lesson learned is thus that different data is required for training an
ML-based model than is the case for a data-based expert model.

On the other hand, the analysis also revealed the limitations of the XAI methods. In
particular, the fact that both methods assume that there are no dependencies between
features limited the analysis, as there are many such dependencies in our dataset.

The principal trends identified by XAI are also predicted by the expert model in this
way. This can also be seen as confirmation of the model derived by experts from the
data. On the other hand, the additional use of further features by the ML model has
also raised the question of whether this could be a key to further improvements of the
expert model. It is possible that oversimplified assumptions are made when deriving the
expert model, for example when calculating the effective stress range from the stress
ratio or when assuming power-law hardening of the material via the hardening exponent
n�. However, a direct ”hint” as to how the expert model should be modified cannot be
derived from the XAI results.

In this first analysis, we did not succeed in identifying the relationships which the
ML models discovered in a way that they could be directly used to improve the expert
model. Therefore, as a next step we intend to the train a boosting model that directly
builds on the DTMF regressor and could give hints on what to add.
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