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Abstract. In the field of advanced driver assistance systems (ADAS) testing
and autonomous driving (AD) feature evaluation, novel approaches relying on
augmented reality (AR) promise to deliver cost-saving benefits. These forward-
looking approaches leverage vSLAM techniques to create mapping solutions that
are essential for augmentation. A critical challenge, however, is maintaining the
high precision required for these maps and, by extension, the SLAM algorithm
itself. This precision is often compromised by the presence of false-positive de-
tections of feature points. In response to this challenge, this paper presents an
improvement to the ORB-SLAMS3 algorithm. The proposed approach incorpo-
rates semantic segmentation without compromising processing speed to increase
the precision and reliability of the SLAM system. This is to ensure that the in-
tegration of AR-based solutions in the automotive sector is both effective and
sustainable, providing tangible benefits in the testing and development of ADAS
and autonomous driving technologies.
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1 Introduction and Motivation

Understanding of the surrounding world of vehicles and robots is essential for automation
[1,2] and testing of automated systems using augmented reality (AR) [3]. While there
are approaches that only use the current perception of the vehicle for planning , others
are based on pre-built maps for localization and orientation. These maps are required
for automated driving to interpret and analyse the current state of the environment
and to navigate the vehicle efficiently. A common approach for map generation is the
usage of Light Detection and Ranging (Lidar) which allows robust creating of maps and
the relocalization inside those maps but the sensors are quite expensive. Pure visual
approaches require only cameras for mapping and localization and are therefore cost-
efficient and suitable for automotive and robotic applications. For visual approaches,
it is necessary to have knowledge about meaningful feature points for relocalization.
Therefore, we present an approach for enhancing visual Simultaneous Localisation and
Mapping (vSLAM) in automotive applications by filtering of feature points for gaining
robustness for AR-based testing of advanced driver assistance systems (ADAS).
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2 State-of-the-Art

In this section, we will focus on the state-of-the-art in mapping and localization of vehicles
and information extraction from images based on semantic segmentation. After a brief
overview on techniques and approaches, the algorithms chosen for our experiments will
be presented and their functionality will be explained.

2.1 Simultaneous Localization and Mapping (SLAM)

Various methods have been established to map the environment only based on images in
a three-dimensional virtual map like Structure From Motion (SfM), vSLAM, and Visual
Odometry (VO) [4]. This offers the possibility that no sensors other than the camera
system are needed to create a 3D model of the environment. Thus, there is no need for
costly sensors like Lidar or Radar. While VO attempts to reconstruct the path step by
step, pose by pose and may optimize only the last n poses of the trajectory using a
window-based bundle fitting approach, vSLAM is primarily concerned with ensuring the
consistency of the global map. The framework of vSLAM algorithms is mainly composed
of three basic modules: Initialization, Tracking, Mapping, and two additional modules:
Re-localization and Global Map Optimization (including Loop Closing) [5]. For the use
of SLAM in automotive vehicles and the associated properties such as fast scene changes
and low texturing of the environment, various approaches are available using vSLAM |6,
7]. In this paper, we focus on the ORB-SLAM3 [8] algorithm and show how its precision
can be enhanced by using semantic image segmentation.

The ORB-SLAM Algorithm. The first version of ORB-SLAM was presented in 2015
and the current version, ORB-SLAMS3, supports of different camera systems and performs
better than comparable SLAM algorithms [7]. Here, ORB-SLAMS3 represents a complete
SLAM system for monocular, stereo, and RGB-D cameras which operates in real-time and
achieves remarkable results in terms of accuracy and robustness in a variety of different
environments. ORB-SLAM3 is used for indoor sequences, drones, and urban driving. It
consists of three main parallel threads: Tracking, Local Mapping, and Loop Closing. This
algorithm is a feature-based approach, which represents the detected points in a three-
dimensional MapPoint. Initially, the approach was to use a mono-based camera and an
Inertial Measurement Unit (IMU) for mapping. It was noticeable that the robustness of
the relocalization and the estimation of the scaling are not sufficient due to the lack of
depth information. Switching to stereo-based cameras allow more accurate mapping of
the environment with more realistic scaling.

2.2 Image Segmentation

Image segmentation, a fundamental process in digital image analysis, involves dividing
a digital image into different segments to simplify its complexity and enable subsequent
analysis of the individual segments. In this technical process, labels are assigned to in-
dividual pixels, identifying objects, people, or other relevant elements in the image [9].
An important application of image segmentation is in object recognition [10]. Instead of
processing the entire image as a whole, an image segmentation algorithm is often used
to identify objects of interest in the image. Then, an object detector can operate within
predefined bounding boxes set by the segmentation algorithm. With this approach, the
detector does not have to analyze the entire image, which increases accuracy and re-
duces the time required for inference. Image segmentation plays a central role in the
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field of computer vision technologies and algorithms and is widely used in various prac-
tical applications. These applications include medical image analysis, computer vision
for autonomous vehicles, face recognition and detection, video surveillance, and satellite
image analysis [11]. While there are several methods for image segmentation, Figure 1
illustrates the three main types.
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Fig. 1. Some of the main types for image segmentation. While semantic segmentation (b) does
not highlight different instances of the same object type, instance segmentation (c) and panoptic
segmentation (d) provides detailed information, e.g. for tracking of objects. [12, p. 1]

3 Problem Formulation

When testing ADAS through AR applications, an algorithm that can handle both map-
ping and tracking is a critical requirement. The challenges posed in this context are
significantly more demanding than for conventional AR applications. This increased com-
plexity arises primarily from two key factors. First, the mapping and tracking processes
must exhibit exceptionally high precision, even at higher speeds. Second, these tasks must
be performed within the test scenarios of the European New Car Assessment Programme
(Euro NCAP) [13]. The unique test environments defined by Euro NCAP present a num-
ber of challenges, as they are very large and there are hardly any existing textures that
can prevent the algorithm from finding its way. In response to this multi-faceted problem,
our paper attempts to answer the following question:

What is a Robust Simultaneous Localization And Mapping Algorithm for Map-
ping and Tracking to Test Camera-based Advanced Driver Assistance Systems
in Low Texture European New Car Assessment Programme-Test Scenarios?
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As shown on the left side in Figure 2, feature points are detected in the sky as well
as on the hood of the ego vehicle, which hinder the performance of the vSLAM algo-
rithm and causes wrong scaling of the environment inside generated maps. Experiments
show that ORB-SLAMS is struggling with the moving vehicle hood and therefore misun-
derstands the scales of the environment and static objects. To filter these false-positive
feature points, two possible approaches are given: (1) optical flow, (2) a suitable image
segmentation. As the difference between sky and distant background which provides in-
deed good orientation points will result in similar optical flow, we will focus on the more
promising approach of image segmentation.

Fig. 2. ORB-SLAMS3 detection results (a) and the resulting map (b) with plenty of false-positive
feature points regarding the sky and the vehicle hood.

4 Approach

Our proposed solution can be divided into two core areas: 3D Global Point Cloud Map
Generation, implemented using the ORB-SLAM3 framework, and the Implementation of
Image Segmentation as shown in Figure 3 based on the idea of the DS-SLAM [14].
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Fig. 3. Enhanced mapping pipeline of ORB-SLAMS3. Parallel calculation of feature points and
semantic segmentation is done on the raw images from the stereo camera. Afterwards feature
points are filtered and feed into the ORB-SLAM3 map generation.

4.1 Suitable Image Segmentation Algorithm

Our initial foray into the literature revealed that we chose the DeepLabV3+ model [15,
16]. DeepLabV3+, which uses the Xception-65 model as its backbone [17], has great ver-
satility in training on different datasets. The use of DeepLLabV3+ trained on the A DFE20k
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dataset [18,19] yields commendable results, accurately detecting the sky and road, albeit
with some limitations, notably occasional inaccuracies in hood detection due to mirror
effects and suboptimal road detection. Nevertheless, the processing speed optimized by
TensorRT achieves a frame rate of about 30 fps, which meets the requirements of our
particular use case.

Given the compelling need to correctly classify feature points within these regions, we
explored alternative approaches. Xie et al. performed a comparative analysis of different
neural networks for different datasets [20] shown in Figure 5. Their evaluation showed that
SegFormer outperforms other options by providing a better balance between processing
speed and accuracy, especially on the ADE20K dataset. SegFormer is shown to be robust
to noise, fog, blur, snow, frost and splatter, as NVIDIA [21] points out.

With these considerations in mind, we seamlessly integrated the SegFormer B3 algo-
rithm, as shown in Figure 4, into our semantic segmentation framework.

Fig. 4. Comparison between DeepLabV3+ (b), SegFormer B2 (c) and SegFormer B3 (d) on the
original image (a). As shown in the figure, DeepLabV3+ is not able to detect the vehicle hood
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4.2 Feature Point Filtering

After assigning the individual pixels to their respective regions, the next phase involves
processing feature points based on these region assignments. First, the region assigned
to the pixel is linked to the corresponding feature point, establishing a link between the
position of the feature point in the image and a particular pixel. Based on the previous
assignment of the region to the pixel, this region is linked to the feature point via a
corresponding index. A decision is then made as to whether the feature point is in a
region that should be excluded from further use, or whether it falls in a region where
feature points should be retained. At this point, additional information is assigned to
each feature point, which is specified with the values -1, 0 or 1, depending on the region
and the corresponding index.

—1, for Region Sky
—1, for Region Hood
1, for Region Street
0, for other Regions

FeaturePoint =

In particular, we assign specific indices to the feature points detected on the road,
a crucial aspect for the subsequent phase of our comprehensive algorithm. This index
information plays a critical role in determining whether feature points contribute to the
creation of the global 3D point cloud map. In this process, we compare the previously
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Fig. 5. Overview and comparison of the performance and processing speed of different neural
networks for semantic image segmentation on the ADE20K dataset. The figure demonstrates
the higher performance of SegFormer compared to DeepLabV3+. [20, p. 1]

assigned indices, keeping feature points with values of 0 and 1, while excluding those
with a value of -1 from further consideration.

Deleted, for Value -1

FenimrePaniWithClasses = {K eeped, for Value 0 and Valuel

As ORB-SLAMS3 progresses, feature points that become map points are assigned
additional labels such as "road” or "no road” depending on the values assigned. In the
final phase of our current implementation, we need to evaluate the impact of semantic
segmentation on the scaling of the global 3D point cloud map and the accuracy of the
trajectory. Figure 6 gives a first qualitative insight into the results of our pipeline.

5 Evaluation

Environment mapping is done using different stereo cameras such as the ZED2i equipped
with a polar filter and a baseline of 120 mm, and the Intel RealSense D455 with a baseline
of 95 mm. ORB-SLAMS is applied to these cameras. The results presented in the images
were obtained using the Intel Realsense D455. Detected features are recorded and stored
in a three-dimensional point cloud. The impact of the low texture of the environment
must be taken into consideration. To overcome the repetition of scene images, traffic
cones are placed along the test track with gaps of 20m, alternating in number on either
side of the track. This ensures that feature matching and proper orientation in the point
cloud occur. The camera is mounted at the rear-view mirror height on the top of the
windshield, as is typical for cars. Figure 7 displays the test setup and track.
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Fig. 6. ORB-SLAM3 detection results without filtering (a) and with filtered feature points
(green rectangles) based on the semantic of the image (b). Using this method the false detection
feature points in the sky and on the hood of the car are removed and being ignored by the
mapping algorithm leading to better scaling and relocalization.
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Fig. 7. Mounted stereo cameras on the test vehicle (a) and the test track with equipped traffic
cones (b). The intervals are used in the evaluation to test the precision regarding scaling of the
SLAM algorithm.
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First of all, it will be examined whether semantic segmentation has a significant influ-
ence on the number of feature points. Table 1 shows, that the number of detected feature
points decreased by more than 50 %. Assuming that the semantic image segmentation is
correct, this means that more than 50 % of the detected feature points are located in the
sky or on the hood of the vehicle and are therefore not suitable for further processing.

Table 1. Comparison of the number of detected map points with and without semantic seg-
mentation.

Dataset Number of Detected Map Points

Without Semantic Segmentation |8361

With Semantic Segmentation 3990
Total Deviations -4371
Deviations in % -52,3

To evaluate the impact on scaling, the distances between traffic cones are shown in
table 2. The beneficial effects of semantic segmentation are easily seen. For an interval of
20 m, the average error is only -0.129 m compared to 1.414 m without segmentation. This
leads to an relative reduction of -0.642 % compared to -7.073 % without segmentation.
For the overall distance of the test track of 160 meters with semantic segmentation, the
difference is -1.027 m (without segmentation 11.117m). In summary, the use of semantic
segmentation clearly adds significant value. Nevertheless, some additional considerations
to the proposed approach are presented in the following section.

Table 2. Comparison of ground truth data (GT) with the original ORB-SLAM3 (No
Segmentation) and with our approach (Segmentation). The intervals are given by the distances
between the traffic cones as shown in Figure 7.

Interval GT Length No Segmentation | Segmentation
20m - 40m 20m 18.603 m 19.840m
40m - 60 m 20m 18.769 m 19.631m
60m - 80 m 20m 18.974m 19.921m
80m - 100 m 20m 18.871m 19.924m
100m - 120m 20m 18.871m 19.993 m
120m - 140 m 20m 18.228 m 19.992m
140m - 160 m 20m 18.365m 19.678 m
160m - 180m 20m 17.967m 19.994m
Average 18.586 m 19.871 m
Total Deviations -1.414m -0.129m
Deviations in % -7.073 -0.642
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6 Conclusion and Future Work

The proposed solution to increase the robustness and precision of vSLAM in automotive
systems proved to be effective. Thus, the scaling error of the map could be significantly
reduced by removing false-positive feature points. Furthermore, the information content
of the map could be further increased by using semantic segmentation. The classes Road
and No Road are now assigned to the corresponding feature points, which can be used in
further calculations. Optimization opportunities arise with regard to processing speed,
and image matching effects in homogeneous test scenarios as well as in more complex
test procedures, which will be incorporated into Euro NCAP test scenarios in the future.
Two proposals are being developed to improve the mapping of the environment:

— Change ORB-SLAM’s feature detector and feature descriptor by a neuronal net-
work to make the vSLAM more robust to a homogeneous environment as well as to
rotations.

— Increase the processing speed of the entire vSLAM approach.
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