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Abstract. The rise of electric vehicles offers new challenges as increasing en-
ergy efficiency and electric range through energy management systems as well as
avoiding range anxiety by providing reliable range information. To realise this,
predictive approaches based on a calculation of the expected energy consumption
for the route to be driven are a feasible option. However, such approaches, realised
through appropriate algorithms, usually require significant computing time, which
can hinder their application. Therefore, this paper presents an approach to realise
energy predictions using artificial intelligence (AI) approaches. The training of
these Al models is performed with simulated data, generated by the algorithm
to be replaced. Three Al models are build, trained, evaluated and optimised to
predict a vehicle’s energy consumption. A feed forward (FNN) and a recurrent
neural network (RNN) model utilise deep learning approaches while a XGBoost
model represents conventional machine learning techniques. In conclusion, the
deep learning models struggle to match the results of the reference prediction
algorithm, while the RNN model even fails to reduce calculation times. In con-
trast, the XG'Boost model is able to generates accurate energy predictions, while
drastically reducing the calculation time.
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1 Introduction

With an increased awareness for energy and resource efficiency as well as stricter emis-
sion regulations a rise of hybrid- and all-electric vehicles occurred over the past years
[1],[2],[3]. Energy management systems can provide smart solutions for the operation of
these vehicles [4],[5]. Accordingly, increased electric ranges and energy efficiency can be
achieved as well as a avoiding range anxiety by providing reliable range information [6].
To achieve this, predictive approaches that rely on prior knowledge of a route are a
suitable solution [7],[8]. The resulting energy prediction can be used for the calcula-
tion of a route specific strategy to control energy consumption/distribution and/or to
enable vehicle users to evaluate range capabilities to mitigate their range anxiety. For
both use cases, a prediction must provide results with sufficient accuracy in acceptable
computation time. Calculation methods based on the previous energy consumption from
historical data can be used in short calculation times, but do not provide precise results.
Empirical prediction methods can also be used, but require large and extensive data sets
that are not widely available [8]. This leaves the use of physical and technical descrip-
tions to create a model based prediction approach. However, these approaches to route
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specific energy prediction cannot be computed in sufficient time and are therefore not
applicable [9],[10]. This is especially the case when detailed models of a vehicle are used,
which leads to an application of relatively simple calculation methods. In contrast, the
best possible prediction of energy consumption for a specific route requires extensive and
detailed models.

For a general applicability, the prediction should be able to provide detailed results
on total energy consumption to derive range information and mitigate range anxiety.
Furthermore the calculation of a predicted energy consumption profile, may be required,
e.g. for implementing an energy control system. Accordingly, the energy prediction must
calculate sufficiently accurate profiles of required data as well as overall correct totals,
such as the total energy consumption. However, this must be done in acceptable cal-
culation times so that the prediction can be integrated into a route planning process
or used by energy management methods. In our context, a prediction algorithm based
on an physical/technical model of vehicle, environment and driver is currently used to
calculate the required energy consumption in the course of a route [8]. This algorithm
provides sufficiently accurate results, but requires several seconds of computation time
for execution and may therefore be too slow for an implementation in real vehicles or for
acceptable user interaction.

Section 2 presents the approach pursued as well as the concept and developing method
for an energy prediction artificial intelligence (AI). Subsequently, section 3 describes the
implementation of Al energy prediction, focusing on evaluation and optimisation. In
Section 4 the resulting models are examined based on three test scenarios. To conclude,
Section 5 summarises this paper and provides a preview to future work.

2 Simulation Based Development of the Energy Prediction ATl

Instead of the existing physical/technical based prediction algorithm, the introduced
approach considers the use of machine learning methods to calculate the required pre-
diction results, e.g. the energy consumption. This approach requires only an initial route
specification to predict the corresponding energy consumption and is presented in Fig. 1.

Physical/Technical
— Prediction Algorithm
energy prediction
Generate v
route Data - energy
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Environment,
\_  Vehicle, Driver ) H /
Al Prediction

Fig. 1. Approach towards the use of machine learning for the prediction of a vehicle’s energy
consumption.

The input data for the Artificial Intelligence (AI') model is provided by a route infor-
mation calculation [11], while the corresponding energy prediction for the Al training is
provided by an energy and dynamic simulation algorithm [8]. Thus, the machine learning
model is trained to replicate the simulated results and is expected to require significantly
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less computing time than the calculation of the previously used prediction algorithm.
Therefore, this approach uses a MATLAB implementation of the prediction algorithm.
The required route data for this is generated by a self-developed MATLAB tool [11],
that allows to provide various route information by accessing corresponding Web- A Pls
(Application Programming Interfaces). This information includes, but is not limited to,
the geographical route date, gradients, traffic facilities and weather information. Based
on this and a dataset for the vehicle and the driver, the physical/technical prediction
algorithm generates the energy consumption profile over the course of a route. In order
to reduce the dataset rt:quucu to evaluate the gcucrar approacn rather than pruuuuug

a fully developed prediction, the driver and vehicle type is fixed and only the route and
environment data are varied.

2.1 Development Method and Selection of the AI Models

To develop an AT model for energy prediction the method displayed in Fig. 2 is used. The
necessary input data and energy prediction is generated by the algorithms implemented
in MATLAB and then used for analysis and pre-processing according to the requirements
of the chosen Al model. Subsequently the A training loop is carried out, by running,
evaluating and optimising the Al model.

Energy
Prediction
\
Generate Analyse Select
Data and an Al
Route,
Envirzl:ﬁent, Preprocess Model
Vehicle, Driver/ Data

Fig. 2. Method for a simulation based development of a machine learning approach for energy
prediction.

Al Training Loop
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Data Generation and Preprocessing Through preprocessing and analysis of the
generated data, representative datasets are created to be used in model training. The
data generation process includes reading the generated input data and corresponding
prediction results to normalise, standardise and categorise them to ensure their suitability
for the AI models. The subsequent analysis of the data includes a plausibility check that
assesses overall quality and integrity to ensure reliability of subsequent analyses and
model training. In addition, insight into the characteristics of the data is gained for
further development, e.g. through histograms, to understand distribution patterns.

Model Selection As a basic model, a feed forward neural network (FNN) is selected
based on its successful use in various prediction tasks across different domains and its
ability to handle complex relationships [12]. As the prediction of energy consumption
involves intricate interactions between multiple variables, the capacity of a FNN to learn
and model such complex patterns becomes particularly advantageous. With the avail-
ability of deep learning frameworks, e.g. PyTorch or TensorFlow, the implementation is
also not that complex. In addition, the preparation of the training data is much easier
compared to a recurrent neural network (RNN), which will also be used. This is due to
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its specific design to capture dependencies within sequential data, which is the case for
energy and dynamic behaviour of a vehicle. In the context of predicting energy consump-
tion, which mainly results from the dynamics and is influenced by past states, the ability
of a RNN to retain and use information from previous inputs seems promising.

While the models already presented use deep learning methods, XGBoost was se-
lected as a third model, which is based on decision trees and ensemble learning. This
model offers efficiency and scalability making it suitable for dealing with large datasets
and computationally intensive tasks. XGBoost can efficiently handle the complexity and
deliver fast and reliable predictions, which is proven successful in various machine learn-
ing competitions and real-world applications. Its robustness and track record make it
a popular choice for tackling diverse prediction problems, which was also demonstrated
across a variety of domains [13].

2.2 Development of the AT Model

After selecting the AI models to be studied for their ability to predict the energy con-
sumption of an electric vehicle, the training of these models is to be carried out. For this
purpose, a framework for development has to be selected first. The training is realised
by AI Training Loop, displayed in Fig. 2, which is executed through two steps. The first
execution is done during the process of model building and training. The second loop run
is performed with the results of an already trained Al model, which are to be evaluated
and may lead to an optimisation of the model.

Framework To build an Al model the selection of an adequate framework ensures
the efficiency of the model development. For deep learning approaches PyTorch and
TensorFlow are among the most widely used frameworks and have gained significant
popularity and a large user base [14]. For this work the implementation of the FNN
and RNN models uses PyTorch as framework, due to its similarities to Python which is
already used for preprocessing, while the XGBoost library itself provides all necessary
resources for building the model.

Building and Training For training, evaluation and optimisation of a model the
dataset is split into a training and validation set. This allows the calculation of an ap-
propriate loss to prevent a bias towards the dataset used for training [15]. The choice
of training to validation split ratio depends on the specific requirements and objectives
of the project. In this case, a ratio of 70:30 is used to create a balance between a suffi-
cient amount of data for training and an extensive amount of evaluation. This balance
is crucial to avoid overfitting, where the model becomes too specialised to the training
data and fails to generalise well to new instances not yet seen. Additionally, the data
is randomly shuffled to achieve more equitable representation of different driving sce-
narios within the training and test datasets, which ensures that the model learns from
a diverse range of situations. Furthermore, to accelerate the training process, scaling of
the features is applied before finally training the Al model with the given dataset. For
the implementation of FNN and RNN models, ReLU is used as activation function and
Adam is used as optimiser.

Evaluation For evaluation of the trained Al model two methods are used. As a first step,
the hold-out method is used to check whether the model generalises well. This involves
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a single instance of data split to training and validation datasets as already described.
As a second step cross-validation is used to gain a more comprehensive understanding
of the model’s performance. This involves multiple datasets of differently split training
and validation data, which are used in the training process. To further evaluate the
generalisation capabilities of the trained models several test scenarios are created that
the model has not yet seen. For this, scenarios are created over different environments,
including city, countryside, and highway settings. To quantify the discrepancy between
the AT predicted and reference energy consumption values, the mean square error ( MSE)
and the total energy consumption of a route are used. Furthermore, a comparison of the
computation time between the chosen AI models and the MATLAB simulation tool is
performed to assess the calculation speed and efficiency.

Optimisation To optimise the Al models, both a systematic approach in terms of
hyperparameters and a manual approach of feature engineering are considered. The hy-
perparameter optimisation is performed with a grid search algorithm, which iterates a
set of parameters defined by the developer and evaluates the model performance for each
variant. For optimisation the GridSearchCV algorithm is used, which combines cross-
validation with hyperparameter tuning [16]. Accordingly, this brute force search can find
the hyperparameter set that performs best over all possible parameter combinations,
also taking into account the generalisation of the model. Furthermore, a optimisation of
the model is to be achieved by adding features created by the developer, which are not
presented in the given dataset but seem promising to increase the model performance.

3 Implementation

To develop the chosen Al models for energy prediction an implementation for train-
ing and executing these models is required. Furthermore, corresponding representative
datasets are required. Therefore, test scenarios are defined and the resulting data is
analysed to ensure data quality. Finally the features and labels for the creation of the
AT models are defined so that evaluation and optimisation can be carried out.

3.1 Data Generation and Analysis

As a first step for building and training of the Al models test scenarios are defined and
corresponding data is generated by the given MATLAB tool. Based on this data it is
crucial to examine the data for sanity and reasonability.

Data Generation For generating the required test scenarios a variety of routes is
created across various driving scenarios, including city, countryside, and highway routes,
to provide diverse and representative conditions. The dataset should contain a diverse
specification of route properties, such as road gradient, number of traffic lights, weather
and wind conditions, season and daytime conditions as well as tyre configurations.

Sanity Checks and Histogram Analysis The examination of the generated data
revealed some problems with the functionality of the MATLAB tool used, particularly
related to its use for generating representative data sets for training Al models. For
example the tool generates weather related data according to the actual conditions.
However, a histogram analysis of these generated datasets shows that this does not lead
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to a proper distribution of weather related data. Accordingly, the tool was adjusted
to manually set weather conditions to achieve a diverse distribution of weather data.
Another finding was that generated times for sunrise, sunset and actual time are difficult
to interpret and therefore not suited well as features. However, this data is only used
by the prediction algorithm to determine the daytime. As a consequence, the tool was
changed to manually setting the daytime to be used as a feature. In addition, it is also
important to check the distribution of the data, as was done for the given curve radius
data. A noteworthy observation in this data plot is a significant concentration of data at
a value of 5000 m, which indicates that the steering wheel is in a straight position. With
the knowledge of this skewed distribution, an optimisation approach can be carried out.

Selection of Features and Labels After careful investigation on the provided data
the features for building the AI model can be defined. The chosen features are tire
type, ambient temperature, weather state, daytime, curve radius, gradient, air density,
resulting wind speed, speed limits, tunnels and traffic signals. To represent the energy
prediction capability, the electrical energy consumption is chosen as label.

3.2 Evaluation and Optimisation

After the successful building of the Al models, the evaluation and optimisation of these
models are the next essential steps to improve overall performance and accuracy. The
deep learning models will be evaluated using the loss curves calculated by the MSE and
serve as a visual tool for understanding a model’s learning behaviour.

Increasing Data Points For the first experiment, a FNN model, consisting of four
hidden layers with 1024 neurons in each layer, a learning rate of 0.001 and 300 training
epochs is implemented. This model is trained with a dataset of 100,000 data points and
results in the loss curve displayed in Fig. 3.

Total Training Time: 235.20 seconds
Total Train Loss: 0.0075
Total Val Loss: 0.0154

Fig. 3. Loss curve of a FNN experiment.

At first glance, the loss trend of the train and the validation data appears promising.
However, for final evaluation the model was used to make a prediction on a previously
unforeseen test scenario. This evaluation shows that the model falls short when applied to
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previously unseen data, which could lead to the assumption that the model is overfitting.
The corresponding loss curve in Fig. 3, however, has no clues, as the validation curve
hardly deviates from the training curve. Therefore, the assumption is made that the
number of training points is not sufficient.

Evaluation of the Amount of Training Data Establishing the precise number of
data points necessary to build an accurate Al model presents a challenge since it highly
depends on the specific problem at hand. Therefore, the scikit-learn Python library pro-
vides a method where different amounts of data points are tested via cross validation to
investigate, whether an increase in data points leads to an improvement in the model’s
predictive accuracy. Fig. 4 presents a visual representation of this method, applied to an
XGBoost model by using the MSE as a metric to evaluate the model’s accuracy, using
the total energy consumption as a target variable. The used XGBoost model consists
of 100 decision trees with a maximum depth of 5 for each tree, while a learning rate of
0.1 and a 5-fold cross validation are used. This example shows, that between 50,000 and
150,000 data points the curve still drops significantly, while past the 300,000 data points
mark, no significant changes are observable.

-8~ Test Score

5 % 10-9 Training Score

MSE

4x10°°

50000 100000 150000 200000 250000 300000 350000
training examples

Fig. 4. XGBoost learning curve by evaluating different sizes of training examples.

Optimising with GridSearchCV To optimise the hyperparameter the GridSearchCV
algorithm provided by scikit-learn is used. As this functions utilises brute-force iteration
of the hyperparameters and combines this with an application of cross-validation it should
be noted that it is a time intensive calculation. However, the optimisations that can be
achieved with this are limited, especially compared to other optimisation approaches such
as feature engineering. For example, when applied to an FNN model, the training loss is
only improved by 10.68 % and the validation loss is only improved by 4.62 %, while the
training time triples.

Feature Engineering The evaluation of the trained Al models as well as the knowledge
of the used prediction algorithm shows that the representation of traffic signals can
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have a significant influence on the resulting prediction. Therefore, a new feature called
distance_trafficSignals is introduced, which describes the distance to the next traffic signal
in order to represent the approaching behaviour of a vehicle. To evaluate, whether the
new feature provides an advantage a FNN model consisting of six hidden layers with
1024 neurons in each layer, a learning rate of 0.0001 and 300 training epochs is used.
With the inclusion of the new feature, a remarkable improvement of 36.72 % in training
loss and an enhancement of 37.53 % in validation loss is achieved, while there was only
a marginal increase in the total training time.

Optimising by Data Scaling Adjustment Based on the analysis of the histograms,
it was suggested that different methods may be useful for scaling the data. Accordingly,
two experiments are conducted to determine whether the use of a quantile transformation
leads to an improvement in model accuracy compared to the use of standardisation. To
carry this out a FNN model consisting of six two layers with 512 neurons in each layer,
a learning rate of 0.0001 and 200 training epochs is used. This experiment shows, that
the use of a quantile transformation as data scaling technique results in a reduction of
16.57 % of training loss and 11.97 % of validation loss.

Optimising the RNN model The evaluation and optimisation of the RNN model
is of particular interest, as different sequence lengths have a significant impact on the
performance. Accordingly, the sequence length is varied during the evaluation process to
gain comprehensive insights how this factor influences the model’s ability to learn, gener-
alise, and predict. To speed up the experimentation, a simplified RNN model consisting
of two layers with 128 neurons in each layer, a learning rate of 0.001 and 100 training
epochs is used. As a baseline the RNN is essentially transformed to a FNN by using a
sequence length of one and is compared to a RNN with a sequence length of six. This
shows significant improvements regarding training and validation loss, while tripling the
time required for training. A further increase to a sequence length of ten does not lead
to another improvement but reveals issues with the simplified model. As a consequence
the complexity of the RNN is increased to four hidden layers with 512 neurons in each
layer, a learning rate of 0.0001 and 200 training epochs. Using this model, it can then be
shown that a further increase in the sequence length does not offer improvements, which
is why a sequence length of ten will be used for the RNN model.

3.3 Resulting Models

After applying the evaluation and optimisation activities to the models, this results in
three descriptions for further use in discussion. To ensure a fair comparison between the
deep learning models, the FNN and RNN model are configured with identical hyperpa-
rameters. The models consist of four hidden layers with 512 neurons in each layer, while
training is done in 200 epochs with a learning rate of 0.0001. As already mentioned, the
RNN uses a sequence length of 10. In contrast, the optimised XGBoost model employs
different parameters It consists of 400 decision trees with a maximum depth of 18 for
each tree and uses a learning rate of 0.1.

4 Evaluation and Discussion

The evaluation and discussion of the developed AI models is based on the application
to 3 test scenarios that are unknown to the models. For evaluation the calculation time of
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the prediction models as well as the accuracy of the resulting energy consumption profile
and corresponding total are considered and compared with the originally used MATLAB
prediction algorithm.

4.1 Test Scenarios

For evaluation of the energy prediction capabilities of the Al models three test routes
representing a specific route type are used. The first scenario is an urban route with a
length of approximately 5 km, 11 traffic lights and mainly driven at a speed of 50 km/h.
It is simulated during the day with summer tyres under overcast skies and an ambient
temperature of 11 °C. The second scenario is a route with a significant highway part,
predominantly high speed sections over 100 km/h over a distance of around 26 km with
only 6 traffic lights. The simulation is based on broken clouds during the day, an ambient
temperature of 14 °C and winter tyres. A third scenario is used, representing a countryside
journey, usually at a speed of over 70 km/h over a distance of approximately 22 km
and significant differences in altitude between 633 and 1233 metres above sea level. The
journey is simulated using winter tyres at an ambient temperature of 13 °C and scattered
clouds during the day.

4.2 Evaluation

The energy prediction results of the MATLAB prediction algorithm used as a refer-
ence and the results of the three Al models are presented for each test scenario in
Tables 1, 2 and 3. Across all three routes, the models produce different results. On the
city route, the FNN slightly under predicts the energy consumption by approximately 7 %
compared to MATLAB, while both RNN and XGBoost overpredict, with differences of
154 % (RNN) and 11.7 % (XGBoost) respectively. For the countryside route, the dif-
ferences between MATLAB and the Al models are more significant. The FFNN notably
predicts negative energy consumption, while the RNN significantly underestimates it
by 40.5 %. In contrast, XGBoost slightly overpredicts the energy usage by 5.2 %. On
the highway route, all three models underestimate energy consumption to varying de-
grees, with the prediction of XGBoost again coming closest to the reference, but still
underestimating by 13 %.

Table 1. Evaluation of characteristics of test scenario 1 (urban route).

MATLAB Algorithm| FNN RNN | XGBoost
MSE of Energy - 0.069 Wh | 0.064 Wh | 0.059 Wh
Consumption

Total Energy 0.466 kWh 0.434 kWh|0.538 kWh|0.521 kWh
Consumption

Calculation Time 3.66 s 0.34 s 5.78 s 0.01 s

In general, XGBoost seems to offer more consistent results and appears to perform
particularly well across different routes compared to the deep learning models. Further-
more, it is notable that for all three routes, the XGBoost model achieved the lowest
MSE values, indicating that its predictions are closer to the reference values. In terms of
calculation time, the XG'Boost model again stands out among the three A models. Not
only does the model provide the most accurate predictions, it also has by far the shortest
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calculation times. For all three routes, the calculation time to run the XGBoost model is
measured in the order of hundredths of a second. In comparison, the MATLAB algorithm
and the RNN model take several seconds and the calculation of the FNN model takes
at least a few milliseconds.

Table 2. Evaluation of characteristics of test scenario 2 (highway route).

MATLAB Algorithm| FNN RNN | XGBoost
MSE of Energy - 0.110 Wh | 0.082 Wh | 0.054 Wh
Consumption
Total Energy 4.270 kWh 3.048 kWh|3.173 kWh]|3.713 kWh
Consumption
Calculation Time 7.75 s 1.36 s 29.57 s 0.03 s

Table 3. Evaluation of characteristics of test scenario 3 (countryside route).

MATLAB Algorithm| FNN RNN | XGBoost
- 0.160 Wh | 0.077 Wh | 0.038 Wh

MSE of Energy

Consumption
Total Energy
. 2.341 kWh -0.211 kWh|1.393 kWh|2.462 kWh
Consumption
Calculation Time 6.93 s 1.17 s 22.81 s 0.02 s

When comparing the prediction of energy consumption profiles, Fig. 5 shows that all
models have problems with the accurate prediction of energy peak values. In particular,
the models tend to underestimate the peaks, especially in stop-and-go scenarios, such as
red traffic lights. In some cases, the models also shift the energy peaks, indicating an
incorrect prediction of the traffic light condition.

4.3 Discussion

In conclusion, the XG'Boost model, which represents the conventional machine learning
approach, achieves the best results in terms of predictive accuracy and calculation time.
Regarding computational efficiency, the FNN model outperforms the RNN model, il-
lustrating a trade-off between predictive accuracy and computational speed. However, it
should also be noted that due to the recursive nature of the RNN model, calculation
times increase drastically for longer distances. This issue disqualifies the use of the RNN
model as a replacement of the MATLAB algorithm. Nevertheless, with the FNN model,
there is a risk that the prediction is significantly inaccurate, such as in the prediction for
the countryside scenario, which could also hinder the use of this approach.

5 Conclusion

With the motivation to use detailed models for predicting energy consumption for speci-
fied routes, an approach is pursued that uses machine learning to reproduce these results
in less computing time. Towards this, two deep-learning models and one model based on
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Fig. 5. Predicted energy consumption of test scenario 1 (city route) of the MATLAB prediction
compared to the prediction of the Al models.

traditional machine learning are used. As deep learning models, both a FNN as a simple
approach and a RNN model to account for the recursive nature of energy prediction
are used. In addition, a XG'Boost model represents a conventional machine learning ap-
proach using decision trees and ensemble learning methods. All three models are trained,
evaluated and optimised to predict the electrical energy consumption of an electric ve-
hicle based on given route and environment characteristics. The corresponding training
data is generated by a MATLAB prediction algorithm, which is to be replaced by the
ATl models. However, the results show that the deep learning models struggle to match
the results of the reference prediction algorithm. In contrast, the XGBoost model using
a conventional approach successfully generates accurate energy predictions, while dras-
tically reducing the calculation time. To conclude, it is shown that it is possible to make
an energy prediction with an alternative method to the use of a physics-based algorithm.

The first assessment of the models is to be expanded in future work. On the one hand
further evaluation is to be carried out, comparing the predictions of the AI models to
measured energy consumption. On the other hand the scope of the AI models prediction
can be expanded, e.g. by predicting further energy and dynamic quantities.
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