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Abstract. Data generation plays an increasingly important and crucial role in training
artificial intelligence (Al) models. Focusing on the field of 3D computed tomography, for
example, there is often a lack of available data. To address this problem, we propose an Al-
based solution to generate training data by adding artificial defects to CT data. Our method
enables the generation of large amounts of realistic defect-laden parts that can be used as
training data for Al applications. By automating the process and adjusting the parameters,
we can generate different defect types and distributions. To evaluate the generated results,
this work trains a segmentation Al and applies it to unseen real-world data. This approach
closes the gap in the availability of training data and enables the industry to use Al
technology effectively.
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1 Introduction

In the realm of technological innovation, Artificial Intelligence (Al) and Deep Learning (DL)
have emerged as transformative forces. However, their voracious appetite for data presents a
formidable challenge that spans across diverse applications. Our focus centers on addressing this
challenge within the domain of industrial computed tomography (CT) data analysis, where data
scarcity has long hindered progress. This paper introduces an Al data-driven pipeline that
leverages a single CT scan of an industrial additively manufactured metal component containing
internal defects as its foundational data source. This pipeline comprises a sequence of steps, each
crucial for reshaping the landscape of data-driven Al applications.

This research represents an important contribution in the domain of data provision for Al and
DL applications, offering a novel solution to the persistent challenge of data scarcity. Our ability
to generate diverse data from minimal inputs has the potential to improve significantly industrial
CT data analysis and numerous other fields reliant on data-intensive AI models. One of the most
challenging one is 3D-CT-Data
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2 Related work

The current state of synthetic data generation research encompasses three major approaches:
algorithmic data generation, simulation, and Al-based methods. It involves a diverse array of
techniques and algorithms. Classical algorithmic data generation relies on randomness as its core
principle. In this case, the data can be generated directly by algorithmic rules that are fed with
random numbers to increase variation [1]. The ranges of random number generation must be
parameterized for this purpose. For this, a deep understanding of the characteristics of the target
data is necessary to set up and parameterize the corresponding rules. Depending on the
complexity of the data to be generated, in this work industrial CT data, an algorithmic generation
can become very complex, which can affect the realism as well as the variance of the data.
Another way of generating data is simulation [2, 3]. ere, the real generation process is digitally
recreated. Depending on the effort and the application, a simulation can provide real data close
to reality. In combination with a controllable random generator, a lot of variant data can be
generated. This generation can be used for industrial CT data. With the use of deep learning (DL)
techniques, in particular autoencoders (AE) [4 and generative adversarial networks (GAN) [5],
which can be used in many different applications. Generative networks are mainly used to
generate data [6—11]. Compared to previous methods, DL has the advantage that artificial neural
networks (ANN) can learn what the data should look like by using training data. The choice of
training data is important. They should be sufficiently numerous and reflect all necessary real
features as well as possible through their variance. In this way, good training conditions can be
created in which the ANN learns the patterns and structures of the training data and can thus
generate new data. Our approach of an I-based generation of industrial CT data including
defects is described below in this paper. The state of the art in data generation is an ever-evolving
field of research. The field is constantly evolving and expanding, particularly with the advent of
artificial intelligence methods and the data they require. The choice of a suitable data generation
method depends on the application, the required know-how and the available hardware.

The landscape of segmentation in recent years has witnessed a significant transformation.
Traditional methods, while still relevant in many applications, are progressively giving way to
Al-driven approaches. Among these classic techniques is thresholding, which relies on variations
in image intensity to isolate features within a specified intensity range. Its effectiveness hinges
on features having distinct intensity values. When other features share the same intensity range,
thresholding becomes incapable of distinguishing between them. For scenarios where features
vary over time and require contextual information for recognition, conventional algorithmic
techniques, such as edge detection, exhibit limitations due to their rigid rules. Deep Learning
(DL) emerges as a game-changer in such situations. Through training ANNs acquire the ability
to discern features within their natural context. When the circumstances change, the ANNs
benefit from their ability to abstract and are still able to recognize the desired features. Important
ANN architectures for segmentation are UNet [12, 13] based architectures. The basis of these
architectures is their U-shaped structure based on encoders and decoders. The encoder part
consists of convolutional layers that are used to extract the features. The decoder recombines the
information in the ascending path and converts it into a representation. In addition to the AE, the
UNet architecture adds skip links that connect the encoder and decoder in different layers. This
links information in different layers to give a more accurate result. The UNet architecture is the
basis for many other derivatives such as VNet [14] or PCUNet [15]. All these derivatives have
different advantages depending on the data. dditionally, these architectures nowadays get
enhanced using attention mechanisms [16] build in Transformer models like UNETR [17, 18].
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3 Methodology

For an Al-based pipeline to generate data in the case of 3D industrial CT data of components
with internal defects, the following pipeline Fig. 1 was developed.

(2) Train (3) Defect (4) Defect (6) AL
(et scan Generation Placement Segmentation

Fig. 1. Pipeline from CT scan to image segmentation

(1) CT scan: The first step is to extract the internal defects from a real scanned component. The
scanned part is available in voxel format. To extract the defects, the part is converted to STL
format, which represents the surface geometry of the part. This step allows the extraction of the
internal defects which are saved as individual separate STL files.

(2) Train Autoencoder: The second step involves creating the core of the defect generation
process, an AE architecture as shown in Fig. 2. To work with the AE, the separate STL defects
from the first step are transformed back into a constant-sized 25° voxel format. With this input
data, the AE learns by encoding defects, mapping them to a compressed representation, and then
decoding them to recreate defects in the voxel format.
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Fig. 2. Schematic of an AE architecture.

(3) Defect Generation: In the third stage, the trained AE is used to generate defects. This is done
by separating the encoder part from the AE. By specifically varying the code layer, individually
defined defects with desired geometric properties can be generated. To feed the correct
activations into the code layer, individual properties are specifically analyzed, resulting in a
parameter space that produces possible real generations. The larger the code layer, the more
precisely individual properties can be mapped and set in the generation. Depending on the
training quality of the auto-encoder, an infinite number of defects can be generated.

(4) Defect Placement: In the fourth step, the generated data is converted to STL format and
placed into a desired STL object. The placement of defects in objects or components is done
using algorithms based on properties such as number of defects, defect size and intersection. In
this way, many variations of a component with different defect characteristics, numbers and
distributions are generated and processed in the next step.

(5) CT-Simulation: In this work, the application and plausibility of the generation pipeline is
evaluated using industrial CT data of components with inner defects. The CT simulation software
ARTIST is used to generate the artificial CT data. Realistic simulation setups were created for
this purpose. The software was automated using a script. The challenge lies in the
parameterization of the software. Realistic setups require knowledge of X-ray physics. In a
further step, the CT projections are reconstructed into a 3D image using the CT reconstruction
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software Siemens Cera [19] By varying the simulation and reconstruction parameters, the
diversity of the resulting images increases. As a result of step 5 of the step chain, artificially
realistic CT images with internal defects are created. Additionally, ground truth is needed for the
next phase, and to obtain this, the scans and reconstructions are idealized. This involves
simulating a defect-free and defective component to generate binary ground truth through
subtraction and thresholding. These label maps serve as training data for all variations of artificial
CT data since defect positions remain consistent between ideal and realistic simulations.

(6) Al Segmentation: In the last step of the data generation pipeline, artificial neural network
models, such as convolutional neural networks (CNNs), are trained with the synthetic 3D data.
The 3D voxel data from (5) were sliced into smaller chunks with a resolution of 128* voxels to
avoid hardware limitations. In this work a UNet architecture is used. Since this is a binary
segmentation, the sigmoid function is used as the output function. The binary cross entropy is
used as the loss. The performance of the segmentation is monitored using the metric Binary
Intersection over Union (BloU). After training, the model is used to segment real CT scans of
components, e.g. for quality control in manufacturing. Manual annotation can then be omitted.

4 Results

In this paper we propose a pipeline that can synthetically generate single part features or whole
objects. In our use case, we specialize the pipeline on defective industrial CT data. This pipeline
can extract the information for the complete workflow from a single real image, train the Al and
generate as much data as desired. The following are results of the pipeline and individual sub-
points that are important and necessary to generate the desired synthetic data. The pipeline is
developed as python modules for each step except for the simulation and reconstruction which
makes it easy to automate the processes.

4.1 Initial CT Data, STL Component and Defect extraction

The first step in the Pipeline is to create a CT scan of the component (Table 1, left) as baseline.
Only one scan is required for the whole pipeline which is done on a CT machine. The projection
data is then reconstructed to a voxel 3D volume (Table 1, center). In this case two hock parts
were scanned together using additional support material to fix the parts during the scan
procedure. Marching cube [20] algorithm techniques allow to extract the material and defects
surfaces depending on a threshold and a voxel resolution (Table 1, right). Additionally, the
support material could be eliminated on STL level. By separating the hull as STL component it
can be later used to place synthetic defect variations in it. The real defects itself are separated
and stored one by one in an STL file as well. Those are the baseline for synthetic defect
generation. Around 40,000 defects could be extracted from the component. By applying a filter
to retrieve only watertight structures of a certain size around 25,000 defects are useful for further
processing.
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Table 1. (right) A photo of the 3D printed metal component. (center) Voxel rendering of 3D
reconstruction after CT scan. (right) STL rendering of component with internal defects.
Real 3D CT Reconstruction STL Component with
Component Defects

4.2 Autoencoder Training and Defect Generation

Synthetic defect generation employs an AE. The initial step involves creating the AE
architecture. To address the issue of varying vertex and face counts in STL defects, they are
converted into binary voxel volumes at a consistent 25 resolution for easier data management
(Table 2, 1st row). Approximately 25,000 voxelized defects serve as training data, with the
encoder learning to create a simplified representation of the input in the code layer and then
reconstruct it using the decoder. Post-training, the encoder and decoder can function as separate
models. When the same data is applied to the encoder for prediction, it produces code layer
representations. The code layer values for all 25,000 samples are recorded, and mean and
standard deviation calculations are performed. These values are crucial for generating
meaningful variations with the decoder. Values outside the mean and standard deviation ranges
yield unrealistic results. The decoder can produce synthetic defects (Table 2, 2 d row) with
higher resolution compared to the extracted defects, enhancing geometric details. This
demonstrates the decoder's ability to generate geometries closely resembling real data. The
rational number space offers an infinite number of variations, even when constraining values to
the mean and standard deviation ranges for each code layer node. The binary voxel count of each
generated defect is measured and stored, along with their corresponding STL versions, in a size-
oriented database.

Table 2. (1st row) Extracted defects from the original component as single STL files. (2nd row) Synthetic
defects generated with the encoder of the AE brought to application.
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4.3 Defect Placement Results

In 4.1 we preserved the STL surface hull of the component to place defect variations inside. To
achieve this, an algorithm first loads the STL hull, which is the 3D model of the component. It
then proceeds to calculate the specific defects to place within the component based on two key
parameters: the desired average defect size and the standard deviation. These parameters guide
the algorithm in selecting which folders within the defect database to load the defects from. In
other words, the algorithm uses these parameters to determine the appropriate sources for defects
that will be placed within the STL component. Also, depending on the inner volume in unit® and
a defined defect density factor the algorithm calculates the number of defects to be placed.
Afterwards it searches coordinates inside the STL hull by picking random coordinates, then
checking if the coordinates are within the surface using the normal vector of the faces. If a
coordinate is valid, it places a defect inside chosen randomly from the database within the defect
size spread. The algorithm also allows to enable and disable intersections by using the empty
hull or the defect updated hull for valid coordinate search. Additionally, multiprocessing could
be activated to decrease the time for processing significantly depending on the available
resources. Using our placement algorithm 40 variations of the component with defects are
created. In Table 3, we compare the placement of defects. The first row shows large defects with
a low density factor, while the second row shows small defects with a high density factor. With
the first four steps it is possible to generate a large amount of STL Data with inner defects for
further applications. Additionally, is it possible to place the generated defects in any STL.

Table 3. Comparison of defect placement using different parameters.
Cross section of component with [Internal defects
internal defects

Defects: 161
Density factor: 0.001
Avg. size: 5000vx

Defects: 1700
Density factor: 0.01
Avg. size: 367vx

4.4 CT Scan and Reconstruction Results

Creating useful training data for segmentation we need the samples and the corresponding
ground truth. For this purpose, first a single ideal scan and reconstruction is done of the hull
without defects and of each of the 40 variations of the defective components. By subtracting the
reconstruction of the defective components from the hull only the defects and some random scan
and reconstruction artifacts remain. Then a binarization is done to create the ground truth voxel
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volume files. The process is illustrated in Table 4. Afterwards, the 40 component variations with
defects are simulated and reconstructed more realistically using advanced parameters and
functions of the simulation and reconstruction. Afterwards an algorithm is used to chop the
volume samples and their ground truth into chunks, therefore it iterates through the sample. If
the actual chunk has a certain amount of voxel above a material threshold and this amount is
more than a certain percentage of the whole chunk, then this chunk is stored with the
corresponding chunk of the ground truth. The selected chunk size is 128%. Using an overlap of
50% when windowing around 8000 samples for training could be retrieved.

Table 3. Step by step illustration of ground truth preparation.

Hull without
defects

Component with
defects

Subtraction result

Thresholding

Binary
segmentation

4.5 Segmentation Model and Training Results

The segmentation is done using a neural network model with the UNet architecture. Instead of
building a model with full size CT volume resolution, the model is trained on the 8000 chunks
with a resolution of 1283, split into train-, test- and validation data (80/10/10). This reduces the
computational effort and training time. Since the model should focus on the features of the
defects and their close surroundings of material to air transition the outer geometry is less
relevant and therefore it is common to train on chunks. The model has around 1.5 million
parameters. As layer activation the ELU function is used, as output activation sigmoid function.
We use binary cross entropy as loss function. To track the progress of the training we use the
metric BloU. The model achieved remarkable 96% BloU on the validation data. In the following
table (Table 5) a sample slice of the synthetic test data is shown together with its corresponding
ground truth, the prediction and a comparison between ground truth and prediction. We can see
that the model was able to find all defects. The segmentation is almost complete only a very few
voxel do not match. The comparison is magnified to increase the visibility of the differences.

Table 4. Illustration of example sample slice, ground truth, prediction and a comparison overlay of
ground truth and prediction

Sample Ground truth IPrediction Comparison (magnified
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4.6 Prediction on Real CT Data

Finally, the capabilities of the model trained on purely synthetic CT data and prediction on real
data is shown. To predict on the real CT data, it was also chopped into chunks, fitting to the
model architecture. In Table 6, we present the outcomes of our research, focusing on the final
stage of our process. Our objective in this stage is to generate synthetic data with significant
variability. This diverse dataset is intended for training a segmentation model used in quality
analysis. Notably, we achieve this using only a single real CT scan as the basis for our synthetic
data generation. We can see that the component has in some areas a very high porosity. The
darker gray spots in the material are all defects. The trained defects segmentation model can
detect most of the defects with good voxel accuracy in respect to the defect geometries. Thus,
we show that the entire pipeline works. The synthetic data generated are sufficiently realistic to
train segmentation Al models and apply them to real data.

Table 5. Prediction result on 2 real CT data sample slices.
Real sample 1 Prediction 1 Real sample 2 Prediction 2

—

5 Conclusion

The developed data generation pipeline provides a solution to fill any STL file with artificial
defects (pores) that can be used as training data for various Al applications and also other
applications which make use of STL data like finite element simulation. This pipeline provides
new opportunities for the creation of numerous digital components with specific defect sets. In
this work, the pipeline is used to generate data for defect segmentation in CT data. For conversion
from STL to CT data we use the simulation tool aRTist and the reconstruction software CERA.
By scripting and automating the pipelining steps, our method provides an efficient approach to
generating CT data. The segmentation results with synthetic defects are used to evaluate the
performance of our pipeline. The successful segmentation of defects in real data proves the
effectiveness and stability of our method. This approach enables the generation of an infinite
amount of data for various applications that require image data. This is especially valuable in
industry, where data for quality assurance and other use cases is often sparse. Without sufficient
training data, Al algorithms cannot learn effectively. Our pipeline addresses this problem by
providing a wide range of defects with high variation, achieved by adjusting the code layer for
pore generation. By combining simulation and reconstruction techniques, we also have control
over the complexity and appearance of the defects. In summary, we have succeeded in
developing a process that uses CT scans to generate countless realistic replicas from a single
component and have demonstrated its quality in comparison with real data.

However, there are some steps in the simulation and reconstruction that require a lot of time and
know-how for a good parameterization and thus for the generated results. To optimize, these
tools need to be handled more efficiently. One of our next targets is to eliminate the need for
external tools and to integrate the whole process into our Al-based pipeline. In addition, we are
continuously working on extending the capabilities of our pipeline by adding new defect classes
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such as cracks as well as creating a graphical user interface for this pipeline. This will greatly
expand the range of applications and take them to a new level of versatility.
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