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Abstract.  
This paper presents the new X-Quality conceptional framework, that applies 
Artificial Intelligence (AI) to contribute to the improvement of quality assurance 
and troubleshooting in manufacturing. The goal is to identify and resolve quality 
issues effectively using AI techniques, applying Explainable AI (XAI) and stream 
reasoning to ensure transparency and comprehensibility to find causes for 
predicted quality defects. There are mainly three approaches of the framework 
described, that are tackling typical industry challenges. The first approach 
combines Long Short-Term Memory (LSTM) and Convolutional Neural Network 
(CNN) for time series quality prediction with SHApley Additive exPlanations 
(SHAP) to explain the LSTM-CNN. The second method combines Machine 
Learning (ML) and Fault Tree Analysis (FTA) methods for comprehensive fault 
detection and analysis. The third technique applies semantic reasoning for real-
time contextualization and root cause identification. 
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1 Introduction 
In the present globalized economic era, industry competition demands continuous 
quality and reliability. Monitoring manufacturing processes is essential to prevent 
failures and maintain product quality. Artificial Intelligence (AI) enhances quality 
assurance by automating tasks traditionally handled by humans, using Machine 
Learning (ML) and Deep Learning (DL) to improve accuracy and consistency in defect 
detection [1]. Traditional troubleshooting methods like Root Cause Analysis (RCA) are 
extended by AI techniques to analyze vast amounts of data from multiple sources, 
improving defect detection and prediction [2]. For the stable deployment of AI-based 
systems and their acceptance by experts and regulators, it is crucial that the decisions 
and results produced by these systems are comprehensible, interpretable, and 
transparent, in other words, “Explainable” [3]. 
Our work aims to leverage AI techniques to enhance quality assurance and 
troubleshooting processes in various industries by developing methods for precise 
defect detection, predictive maintenance, and effective RCA. 
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The rest of this paper is organized as follows. Section 2 presents the related work, 
discussing previous research and approaches relevant to our study. Section 
3 introduces the proposed X-Quality conceptional framework, and section 4 details the 
approaches that are integrated within this framework. Section 5 provides a critical 
discussion, evaluating the strengths and challenges of this framework and provides an 
outlook for future work. Finally, Section 6 concludes this paper. 

2 Related Work 
Recent research in quality assurance and troubleshooting in manufacturing has 
increasingly turned to AI and data-driven approaches. This section reviews related 
works that explore these approaches. While many works focus on automation, 
predictive capabilities, and explanations, our X-Quality conceptional framework 
focuses on a holistic view of the production line for a more comprehensive 
explainability and traceability of quality issues to determine the causes of the 
occurrences. 
Several studies have explored AI-driven approaches for quality assurance in 
manufacturing, addressing challenges like data complexity, lack of transparency, and 
adaptability. The work [4] reviews these challenges and proposes a functional 
software architecture using Automated ML (AutoML) for automated model training and 
advanced data preparation to handle diverse data sources. Similarly, the study [5] 
focuses on the potential of ML and DL techniques for predictive quality, clustering 
existing methods by manufacturing processes, data sources, and ML methods. [6] 
proposes the Hybrid Digitization Approach to Process Improvement (HyDAPI) 
methodology that utilizes key elements of the Six Sigma Define-Measure-Analyse-
Improve-Control (DMAIC) and the CRoss-Industry Standard Process for Data Mining 
(CRISP-DM) methodologies to enhance decision-making and operational efficiency. 
[7] and [8] address the need for transparency through eXplainable AI (XAI), using 
various XAI techniques to enhance transparency of ML models and improve 
preventive maintenance. 
While these studies contribute valuable insights into AI applications for quality 
assurance in manufacturing, our X-Quality conceptional framework differentiates by 
integrating inductive and deductive AI, XAI, and expert knowledge across multiple 
production stages. Unlike [4], who emphasizes automation, or [7], who focus on 
improving transparency of ML models, our approach provides a more holistic 
perspective. By using ontology-based analysis, it enables more effective RCA and 
proactive actions, in order to prevent quality issues throughout the entire 
manufacturing workflow. 

3 X-Quality Conceptional Framework 
In multi-stage manufacturing processes, such as milling, grinding, and assembly, 
various operational parameters, such as cutting conditions, tool wear, and surface 
quality, must be monitored. Failures at one process can propagate, affecting 
subsequent processes and the final product. The X-Quality conceptional framework 
provides a more comprehensive view of the manufacturing workflow by monitoring 
data across multiple processes rather than focusing on a single manufacturing 



 

 

process, enabling the system to identify final product issues and trace them back to 
the process where the deviation occurred. 
In traditional manufacturing production lines, each operator does manual inspection at 
their respective machine (milling, grinding, assembly) and a quality manager 
supervises the overall production process for total quality control (Figure 1a). In the X-
Quality conceptional framework (Figure 1b) from each machine, data is collected and 
different AI/XAI methods are applied to the collected data, in order to predict the 
quality after the manufacturing process and additionally provide the explanation for the 
prediction for the corresponding operator. Data streams, predictions and explanations 
are used to enrich an ontology. When a quality issue is predicted, the ontology is used 
to trace the root cause by linking machine failures to the quality issue. The quality 
manager supervises the entire manufacturing process using this ontology. This allows 
the quality manager to take proactive steps to maintain the overall quality of the 
production line, ensuring more effective quality assurance and troubleshooting in 
manufacturing. For example, if a defect, like a misaligned component, is detected in 
the assembly stage, the system can trace this issue back through the earlier 
processes, identifying that the problem arises from surface roughness during milling 
due to excessive tool wear. By taking proactive actions, such as replacing worn tools, 
similar defects can be prevented from occurring in future production cycles. 
 

 
Figure 1: X-Quality Conceptional Framework 

4 Three Approaches for X-Quality Conceptional Framework 
The following sections introduce the approaches that are integrated in the X-Quality 
conceptional framework. 
 
  



 

 

4.1  Time Series Data used for Quality Prediction 

To predict product quality using time series sensor data, DL models such as Long 
Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) are commonly 
employed due to their ability to handle this type of data effectively. Combining these 
models can leverage their complementary strengths. CNNs reduce the dimensionality 
of the input data while capturing spatial features, whereas LSTMs excel at capturing 
temporal dependencies, leading to more accurate predictions of product quality.  
The proposed model is expected to yield strong results in estimating product quality. 
However, like most DL models, it suffers from the "black box" nature, making its 
decision-making process difficult to interpret. To address the lack of transparency, a 
well-known post-hoc explanation model, named SHapley Additive exPlanations 
(SHAP) [9] is incorporated, which provides explanations in the form of relative 
importance values, being commonly referred to as SHAP scores. These scores 
highlight the features that most influence the model's predictions and reveal how each 
feature contributes to the final output. This enhances the interpretability of the model 
while maintaining its predictive power. 
The important scores provided by the SHAP library will be used to select the features 
that most affect the prediction of our model. These features associated with their 
SHAP values that provide a link between the input and output, will be used as input to 
a Multidimensional Matrix Profile (MMP) [10] that allows to identify numerous 
structural elements within time series data, such as repeated behaviors, known as 
motifs, as well as anomalies, referred to as discords.  
Our focus is on identifying discords which must appear simultaneously in both time 
series, named as natural anomalies, and represent data points that are most different 
among all the time series. Notably, the model is able to capture and explain these 
irregularities that correspond to product quality loss. The architecture of the proposed 
method is illustrated in Figure 2. 

 
Figure 2: Quality prediction model with explainability for time series data 
 
  



 

 

4.2  Combination of Artificial Intelligence and Fault Tree Analysis 

The approach combines AI, specifically ML models, with Fault Tree Analysis (FTA) to 
enhance the prediction and understanding of system failures. ML models predict the 
probabilities of Basic Events (BEs) in a fault tree, which are then used to calculate the 
likelihood of the Top Event (TE). This enables the identification of underlying failure 
causes. The deductive structure of fault trees helps to determine the TE, thereby 
enhancing the explainability of the TE predictions. 
Figure 3 illustrates the implementation of this approach. To implement this approach, 
an expert first constructs a fault tree based on their domain knowledge. ML models 
are then trained to predict the probabilities of the BEs within this fault tree. Once these 
probabilities are obtained, FTA is used to determine whether the TE will occur. If the 
TE is predicted to occur, the system can analyze the fault tree to explain which BEs or 
combinations of BEs are responsible for triggering the TE. Furthermore, it can provide 
recommendations on which BEs should be mitigated or eliminated to prevent the 
occurrence of the TE, offering actionable insights to improve system reliability. 
The proposed approach offers several potentials, particularly in the context of 
explainability and understandability in the manufacturing domain. One strength is the 
ability of this approach to provide an explainable occurrence of the TE. Since fault 
trees are a well-established method in the industry for representing the logical 
relationships between different system states, stakeholders in manufacturing are more 
familiar with this explanation. This familiarity enhances the understanding in the 
prediction and makes the explanation more intuitive for stakeholders in the 
manufacturing. This understanding provides a better decision-making and intervention 
in manufacturing processes. However, there are also limitations that has to be 
considered. While the occurrence of TEs can be explained, the occurrence of BEs 
remains opaque due to the "black box" nature of the DL models that are used to 
predict these events. This lack of transparency in DL models is a significant challenge, 
because it restricts our ability to fully understand and interpret the underlying 
mechanisms that lead to BE occurrences. Additionally, the construction of fault trees 
requires expert knowledge and is highly time-consuming. This dependency on domain 
experts not only limits the scalability of the approach but also increases the required 
resource. The need for expert involvement in developing, refining, and validating fault 
trees can create bottlenecks, particularly in dynamic or rapidly evolving manufacturing 
environments where quick adaptation is crucial.  

 
Figure 3: Combining ML with FTA for explainable TE occurrence 
  



 

 

4.3  Stream Reasoning 

Stream Reasoning is used to continuously query heterogeneous data streams from 
multiple sources in real time and apply logical reasoning to the data. The aim is to 
detect situations associated to quality problems in finished products and to understand 
the causes that lead to them. During the process, an ontology is populated to contain 
all the collected information to reason about the detected situations and causes.  
To apply this approach in manufacturing, it is necessary to define the constraints that 
apply to the machines and products in question. This will enable the identification and 
categorization of abnormal situations. A constraint represents a rule on a property of a 
machine or a product and a situation is composed of sets of constraints. Defined 
constraints and situations are added into the ontology to support querying and 
detection. The ontology contains information on machines and sensors used in the 
production line. Indeed, as each query is composed of constraints representing one 
situation, numerous references are made to the ontology to obtain links between 
machines, sensors and values. Once an abnormal situation is detected, the ontology 
is updated with the related constraint values, sensor and machine or product. As 
quality issues are often from machine-related causes, identifying the origin of the 
problem is essential. Reasoning over the ontology helps trace quality issues back to 
the initial machine failures, providing insights into the root cause of the problem. 
Since the input data is not formatted for use in an ontology, it is transformed into W3C 
standards such as Resource Description Framework (RDF). These statements 
exchange data on the web as triples: subject-predicate-object [11]. RDF statements 
can be combined into a dataset which can be queried using a query language such as 
SPARQL [12]. A SPARQL query is a tuple composed of a SPARQL algebra 
expression, an RDF dataset and a query form. As the data must be continuously 
treated in real time, it is therefore processed as streaming data. RDF streams, which 
are unbounded sequences of timestamped RDF statements, are used for this 
purpose.   
The goal is to contextualize data streams composed of raw data and prediction results 
and explanations from predictive models (see Figure 4). Data processed by these 
models is collected and used in a Stream Generator to create RDF streams, which are 
continuously queried with a Stream Reasoner for pertinent information. An ontology 
containing expert knowledge is used to contextualize the streams. Since streaming 
data cannot be queried directly, the streams are parsed into finite pieces using time 
windows. A time window is defined by two-time stamps, such that any event within 
that interval is included in it [13]. To select a stream piece, the time window uses the 
timestamp of the events. Once parsed, streams can be queried like static data. 

 
Figure 4: Quality issue detection with stream reasoning 



 

 

5 Critical Discussion 
The X-Quality conceptional framework presents a holistic approach to integrate 
inductive and deductive AI,  XAI, and expert knowledge to improve quality prediction 
and RCA in manufacturing. However, several considerations arise when evaluating 
the framework, particularly in terms of practical deployment, scalability, and 
maintainability in real-world environments. 
One of the key strengths of the X-Quality conceptional framework is its comprehensive 
integration of various methods. By using different AI/XAI methods for time series data, 
FTA, and stream reasoning, the framework is able to effectively address predictive 
maintenance, defect detection, and RCA. This approach ensures that the framework 
not only forecasts or detects potential issues but also provides actionable explanations 
and contextual insights, allowing operators and the quality manager to make informed 
decisions. This enhances both the product quality and the process reliability. Another 
strength of this framework is its adaptive capability, which is enabled by the use of 
stream reasoning. This enables the framework to continuously update the system 
based on data streams and to respond to changes in machine conditions or product 
quality. A further strength is the ontology that capitalizes expert knowledge to provide 
a structured formal model of the manufacturing environment. The ontology establishes 
a meaningful relationship between different machines or products, sensors, and 
related constraint values, enabling contextualized analysis and RCA. 
Despite its strengths, the framework faces several challenges, particularly in terms of 
scalability and maintainability. The integration of this framework to larger 
manufacturing plants that provide high-frequency data streams, requires high 
computational resources. Moreover, the ontology requires continuous updates to 
remain relevant as machine configurations, sensor types, and production lines evolve. 
This maintenance and updating of the ontology present another significant challenge. 
In dynamic manufacturing environments the need for regular updates could become a 
bottleneck, since it requires expert dependence. Another challenge is to provide 
heterogeneous data streams, because they are coming from various sources and 
could also be perturbed by noise. A further potential challenge is the interpretability of 
the explanations provided by the framework, because the explanations may still be 
complex or difficult for operators or the quality manager to interpret. 
Future work should focus on improving scalability by automating ontology updates to 
reduce the expert dependence, and improving the interpretability and 
comprehensibility of the explanations provided by the framework. Developing efficient 
methods for processing high-frequency data and simplifying complex outputs will be 
essential for real-world deployment in dynamic manufacturing environments. 

6 Conclusion 
In conclusion, the X-Quality conceptional framework combines machine data with AI 
and XAI methods to predict future quality issues and trace potential failures back to 
their root causes. By offering transparent explanations for these predictions, the 
system enables operators and the quality manager to understand and address the 
root causes of defects and thus provide more effective quality assurance and 
troubleshooting in manufacturing. This data-driven approach reduces downtime, 



 

 

improves operational efficiency, and contribute to cost reduction, leading to better 
product quality and more reliable production processes. 
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