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Abstract. This research focuses on Non-Intrusive Load Monitoring (NILM), a
crucial component of energy management, enabling users to effectively monitor
and reduce energy consumption. In a previous work, we developed a hybrid nerual
network with combining 1D Convolutional Neural Networks (1D CNN) and Long
Short-Term Memory networks (LSTM) for disaggregating 11 appliances using the
AMPds2 dataset. Based on this work, we aim to create a generalized model ca-
pable of transferring knowledge gained from one building to others. Promising
results have been achieved through fine-tuning techniques, indicating the model’s
adaptability and effectiveness in diverse settings. Notably, our research breaks new
ground by employing transfer learning for the disaggregation of 10 appliances,
surpassing previous work while maintaining a lower complexity. This study un-
derscores the potential of NILM techniques in energy conservation and establishes
a foundation for scalable, transferable models that can contribute to sustainable
energy.

Keywords: Non-Intrusive Load Monitoring, energy disaggregation, Neural Net-
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1 Introduction

Today’s technologies are playing a pivotal role in addressing the global energy crisis by
reshaping the way we design, construct, and manage buildings, giving rise to the concept
of "smart buildings”. In response to increasing energy demands, climate change concerns,
and the need for sustainable practices, smart buildings leverage advanced technologies to
optimize energy efficiency and resource utilization. These technologies enable buildings to
dynamically adapt and monitor their heating, cooling, lighting, and power usage, thereby
reducing energy consumption. Smart building technology has emerged as a key concept
in modern urban infrastructure, prioritizing improvements in energy efficiency and sus-
tainability [1]. A key facet of smart building operation involves the ongoing monitoring
of electrical consumption by individual appliances, an aspect that has gained significant
attention in recent years [2]. Through meticulous tracking and analysis of energy usage
patterns within smart buildings, opportunities to address inefficiencies and implement
precise energy-saving measures become evident. Authors in [3] reviewed existing research
about the outcome of continuous and real-time monitoring of contained appliances within
multiple buildings over multiple geographical areas. The results of the mentioned study
demonstrate that appliance monitoring can yield energy savings of up to 23%. Never-
theless, it is imperative to acknowledge that implementing load monitoring in buildings
necessitates the incorporation of additional hardware and resources [2,4].

Actually, we can avoid the issue of installing more hardware to monitor appliances by
using more sophisticated approaches. These methods involve enhancing the capabilities
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of the primary meter, enabling it to intelligently process total building energy consump-
tion data for the purpose of monitoring individual appliances [2, 4, 5]. This methodology
is commonly referred to as ”"Non-Intrusive Load Monitoring” (NILM) which has gained
prominence in the field of energy management and smart building technology [2]. Re-
cent research in NILM primarily focuses on using Machine Learning (ML) algorithms to
address the challenge posed by the unpredictable nature of electrical load behavior [2].
In our previous study [6], we introduced a new neural network design to separate indi-
vidual appliance signals from a main meter reading using a publicly available dataset.
However, there is a common limitation with these solutions, generalizability was not ver-
ified across various buildings [5]. This issue arises because training ML models demands
extensive datasets [5], which often means installing sub-meters for an extended period.
Consequently, the main goal of our research is to test the applicability of our previous
findings on a different dataset.

2 Non-Intrusive Load Monitoring (NILM) with Machine
Learning

2.1 Overview and motivation

Non-Intrusive Load Monitoring (NILM), also known as energy disaggregation, is a tech-
nique used in the field of energy monitoring and management [4]. It involves the process
of extracting detailed information about the individual appliances and devices within a
building when there is only one meter measuring the total energy consumption for the
entire building. This is modeled using equation (1) [4,5]. In this scenario, NILM relies
solely on the total power consumption signal, which is the aggregate power consumption
of all appliances and devices operating within the building. By analyzing the unique elec-
trical signatures and patterns associated with various appliances, NILM algorithms can
identify when specific appliances are in use and estimate their power consumption. This
enables users to gain insights into the energy usage of individual devices without the
need for additional meters or sensors on each appliance, making it a non-intrusive and
cost-effective method for monitoring and managing energy consumption in buildings.
The total power consumption P(t) is the sum of the unknown individual appliances’
consumption p;(t) among N appliances and a measurement error €(t) [7]:

N

P(t) =Y pi(t) +(t) (1)

=1

Due to the inherent complexity of the problem, the inverse aggregation operation, par-
ticularly in cases where individual appliance consumptions are unknown and appliance
behaviour is non-deterministic, poses a significant challenge. Traditional and straight-
forward algorithms may struggle to effectively disaggregate the aggregate signal under
these conditions. Consequently, there has been a growing interest among scientists in em-
ploying ML algorithms to tackle this demanding task. ML offers a promising approach
because it can adapt and learn from data, making it well-suited for capturing various
appliances’ diverse and often non-linear behaviours [2].

ML approaches for NILM are typically categorized into two primary domains: On/off
detection (classification) and instantaneous consumption estimation (regression) [2,8].
Our particular focus lies within the regression perspective. Among the array of ML algo-
rithms proposed for this purpose, Markov models stand out as a noteworthy choice [2, 9].
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Markov models possess the capability to autonomously discern and adapt to temporal
dependencies within the data. Consequently, they hold significant promise in effectively
addressing the challenges associated with load disaggregation [2,9]. On the other hand,
Artificial Neural Networks (ANNs) play a prominent role in NILM disaggregation [2, 5].
This involvement spans various types of ANNs, ranging from the foundational feedfor-
ward ANN to more advanced architectures like Convolutional Neural Networks (CNNs)
and context-aware models such as Long Short-Term Memory (LSTM) networks [2]. We
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Fig. 1. Proposed multi-target disaggregation neural network [6]

have recently developed a new training scheme for disaggregating energy signals [6] us-
ing neural networks. Our approach consists of using a hybrid dual-channel deep neural
network. We used 1D CNN along with LSTM layers to disaggregate 11 appliances in a
Multi-Target Regression (MTR) framework with a sampling period of 60 seconds. The
learning architecture is represented by Figure 1 [6]. Our method resulted in a disaggrega-
tion accuracy of 93.27% and a Normalized Root Mean Squared Error (NRMSE) of 0.19
[6]. Furthermore, our model performed better than previous works [6] using the AMPds2
dataset [10] which a reference low-frequency dataset. Nonetheless, a significant limita-
tion of the majority of existing studies is their absence to assess the transferability and
generalizability of the developed models to different households [5,11]. In simpler terms,
these studies often train and test their models using data from a single specific building,
without considering how well the models might perform in other buildings.

2.2 NILM and transfer learning

In the context of this study, the authors in [5] introduced two distinct methodologies

for addressing the concept of transfer learning on a mono-target regression basis for
5 appliances: Model-Agnostic Meta-Learning (MAML) and ensemble learning. In the
MAML approach, a singular neural network undergoes pretraining on a meta-dataset
and subsequently experiences fine-tuning when exposed to a new dataset. Conversely,
in the ensemble approach detailed by the authors in [5], a network is structured as
an ensemble of numerous sub-networks, each trained on distinct datasets. The work
presented in [11] introduced a fine-tuning procedure using a pure 1D CNN within the
framework of multi-target regression, utilizing four publicly available datasets. In these
experiments, the number of disaggregated appliances is between 3 and 6. In their study
detailed in [12], researchers examined the direct application of pre-trained models to
alternate datasets without the need for fine-tuning or additional learning. This evaluation
was conducted on three distinct appliances: A microwave, a dishwasher, and a fridge. The
study introduced two distinct neural architectures for this purpose, a 1D CNN based
architecture and another one consisting of a hybrid network incorporating both 1D CNN
and bidirectional Gated Recurrent Units (GRU). Commonly, the mentioned studies [5,
11, 12] have presented intriguing results while encountering certain challenges during the
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transfer process. Additionally, the sampling period is the same (around 8 seconds). Lastly,
a significant commonality among these studies is the transfer of knowledge to identical
appliances, with each output corresponding to the same set of appliances.

Drawing inspiration from prior research and the concept of developing a versatile
model, our objectives, using the best model obtained from [6], are as follows:

— To assess the adaptability of our trained model, as documented in [6], when applied to
alternative datasets characterized by a notably low sampling frequency of 60 seconds.

— To expand the scope of appliance disaggregation to include a larger number of ap-
pliances, exceeding six in total.

— To introduce previously unconsidered (new) appliances into our model.

3 Investigation learning transferability for NILM

The intriguing aspect of transfer learning lies in its ability to enable a pre-trained model
to generalize and perform a similar task on different data sources, requiring significantly
less data and time [13]. Nevertheless, this necessitates pre-trained models that have been
trained on very large multi-source datasets to ensure their optimal performance. To
apply this concept to our specific task, we can easily fine-tune a pre-trained model to
disaggregate appliance electrical consumption with just a few days of monitoring using
plug meters.

In this section, we conduct our experiments and perform fine-tuning on the model
originally obtained in [6], but this time we apply it to a different dataset. We utilize the
same development environment as described in [6]. We recreate the identical network
architecture from the previous work and import the parameters obtained in [6], subse-
quently initiating the fine-tuning process. Notably, we have switched the optimization
algorithm from Adamax to Root Mean Square propagation (RMSprop) [14] which is an
optimization algorithm that adapts the learning rates for each parameter during training
to improve convergence.

3.1 DB description

Our initial research was conducted using the AMPds2 dataset, officially known as 'The
Almanac of Minutely Power dataset 2 (AMPds2) [6,10]. This dataset is publicly avail-
able and comprises two years of aggregated power consumption and load monitoring data
collected from a household located in Canada [10]. It includes data from 20 different ap-
pliances, all sampled at a 60-second interval. We find this dataset particularly noteworthy
due to its unique characteristic of low-frequency sampling and large number of monitored
appliances [10]. In the other hand, the Electricity Consumption and Occupancy (ECO)
dataset comprises appliance load measurements from six buildings over an eight-month
period in Switzerland [15]. These measurements encompass current, voltage, and phase
shift data from the three phases, sampled at a one-second frequency [15]. We prepro-
cessed the dataset and calculated the real and reactive power, and then sub-sampled the
whole set from 1 second to 60 seconds. Among the six houses we selected the second
house because it contains more monitored loads than the others. Table 1 represents the
most important characteristics of the used datasets. Note that we didn’t consider the
stove appliance from ECO dataset because of short monitoring duration. Figure 2 shows
a heat map of appliances utilization over 244 days.
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Table 1. Description and comparaison of major features for AMPds2 and ECO datasets

AMPds2

ECO (house2)

Electrical distribution sys-
tem

Single phase

Three Phases

Sampling period T=60s T=1s

Duration 2 years 244 days

Number of selected appli- 11/20 10/11

ances

List of selected appliances Basement, clothes washer, Dishwasher (DWR), air
clothes dryer, dishwasher, exhaust (AXT), fridge
fridge, furnace, heat pump, (FRG), kettle (KTL),
home office, wall oven, tele- freezer (FRZ), television

vision, and hot water

(TLV), tablet (TBL), enter-
tainment (ENT), and lamp
(LMP)

Selected features

Active and reactive powers

Active and reactive powers

Maximum active power (P)

11,706.0 watts

5,968.6 watts

Minimum active power (P) 0.0 Watts 0.0 Watts
Mean active power (P) 860.3 Watts 210.4 Watts
Standard deviation of active ~ 826.7 watts 330.3 watts

power (P)

3.2 Tests and results

We retrained the original model on the original dataset AMPds2 without considering
the current (I) because ECO consists of a three-phase system. The results are almost
the same with a tiny degradation of around 1%. Then we cloned the resulted model and
fine tuned it using a learning rate of 5 x 1075 using 50 epochs. We considered randomly
20% of our data as training set and another 20% for testing. The Mean Absolute Error
(MAE) in equation (2) was chosen to be both a metric to calculate the error and a
loss function for the RMSprop optimizer. Along with MAE, we use the Desegregation
Accuracy (DA) which indicates how well the model fit the ground truth (equation (3)).
Note that IV refers to the number of appliances, L is the length of the signal in samples,
y] represents the 4" sample that belongs to the i*" appliance for the real values. 7 refers
to the estimated consumption with the same logic as for y.

DY

=1

L—

[y

J

MAE = y! — 9! (2)

=0

S,

Zz 12 yz-_yz
Zz 1ZL . J

In order to investigate our results, we trained another model which has the same archi-
tecture but with randomly initialized parameters (weights and biases). Table 2 represents
the results for the training of both models: Pre-trained model on AMPds2 (Fine-tuned)
and the randomly initialized model (Trained). The columns titles represents the abbrevi-
ations of the chosen appliances and the last column is the overall performance. In Figure
3, we can visualize different disaggregation scenarios for three appliances from the test
set: fridge, dishwasher, television, entertainment, lamp, and kettle. The area filled in grey

DA(%) =100 x [ 1-

(3)
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Fig. 2. Appliances’ use rate over all monitored days

represents the total household consumption (main meter), the blue dashed line shows the
actual consumption for these appliances (ground truth), the green line represents the dis-
aggregation results from the fine-tuned model, and the red line shows the outcomes from
the trained model.

4 Discussion and comparison with related works

In general, when we look at the results presented in Table 2 and Figure 3, we can see
that the fine-tuned model performs much better than the model trained with random
parameters. The fine-tuned model has an overall DA of 87.02% and a mean MAE of 5.56
Watts, whereas the randomly trained model has a DA of 82.58%. The most significant
improvement is seen in the dishwasher appliance category. For the fine-tuned model, the
DA for dishwashers is 79.67%, while the trained model only achieves a DA of 49.77%.
This difference can be explained by the fact that the pre-trained model was exposed to
the AMPds2 dataset, which contains more information about dishwasher usage compared

Table 2. Results of both models on the test set from ECO (fine-tuned trained on AMPds2 and
fine tuned on ECO)

model DWR AXT FRG KTL FRZ TLV TBL ENT LMP STR ALL
m Fine-tuned 6.55 1.01 7.70 6.25 5.95 5.40 1.32 8.39 9.23 3.83 5.56
;Trained 16.1 143 8.34 6.18 7.67 825 1.13 11.60 9.96 3.95 747

Fine-tuned 79.67 43.54 82.91 47.09 87.78 93.40 40.35 92.68 83.88 88.37 87.02
<QGTrained 49.77 20.08 81.48 48.48 84.27 89.83 49.20 89.88 82.6 87.99 82.58
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Fig. 3. Disaggregation performance of both models on the test set with respect to the aggregated
signal and the real values (refereed to as ground truth)

to the ECO dataset. This exposure allowed the pre-trained model to generalize better,
while the trained model struggled to accurately separate dishwasher usage from other
appliances. Figure 2 proves our point of view on how this appliance was rarely used.

The datasets have other common appliances, namely the fridge and television. When
comparing accuracy, the fine-tuned model performed better, especially for the television
appliance, showing a notable increase of approximately 4% in accuracy. However, the
fridge appliance’s performance was quite similar for both models, with a slight advantage
of 1.5% in favour of the fine-tuned model. This result can be attributed to the fact that
the Fridge appliance is typically running continuously as we can see in Figure 2, allowing
the trained model, even with limited data, to effectively disaggregate this appliance. We
have observed intriguing outcomes regarding the entertainment appliance, where the fine-
tuned model demonstrated superior disaggregation performance compared to the trained
model. Interestingly, even though the exact appliance was absent in the AMPds2 dataset,
the home office appliance consumption is much similar to the entertainment appliance.
The freezer consumption signature is very similar to the fridge appliance which explains
the good performance.

For the remaining appliances, the fine-tuned model consistently outperformed the
trained model, except for two appliances: tablet and kettle. Regrettably, both models
struggled to effectively disaggregate these two appliances. It is noteworthy that the tablet
and kettle appliances were not included in the AMPds2 dataset and their use was rare
(Figure 2), which consequently led to the pre-trained model’s failure in accurately disag-
gregating them.
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Table 3. Comparison of our work with related works

Work Sampling  Target Number of Input width  Number of Transfer
period appliances datasets method

5] 8s mono-target 5 99 2 fine-tuning

11 6s multi-target 3-7 599 3 fine-tuning

12 8s mono-target 3 variant 3 direct-test

Our 60s multi-target 10 30 2 fine-tuning

Let us now examine the output performances of both models, as depicted in Figure
3. In the left column, we observe the appliances common to both datasets. Notably, for
the dishwasher appliance, the trained model exhibited complete inability to detect it,
while the fine-tuned model achieved a partial fit to the actual consumption pattern, as
reflected in the accuracy values reported in Table 2. Across the remaining examples, it
becomes evident that the fine-tuned model consistently outperforms the trained version
by providing a closer match to the ground truth a lower error. Finally, a comparative
analysis is conducted to assess the intricacy of our research, the extent of disaggregated
appliances considered, and whether the transfer necessitates fine-tuning or can be directly
tested. The evaluation of complexity encompasses several critical facets, namely the width
of the input window, the choice between multi or mono-target disaggregation, and the
sampling period. Based on the information on Table 3, we notice that our method is
less complex with a very high sampling period (60s) instead of 8s or 6s [5,11,12] with
a window of 30 samples only. Our model is a multi-target meaning that we need only
one model to disaggregate all appliances simultaneously. The limitation of our work is
the number of used datasets where we trained our model on AMPds2 and fine-tuned it
on ECO, the final limitation is that we still need fine-tuning meaning we still need some
supervised data to apply our task.

5 Conclusion

In conclusion, our research has demonstrated the potential and effectiveness of transfer
learning in the context of Non-Intrusive Load Monitoring (NILM). By training a model
on the AMPds2 dataset and then transferring this knowledge to the ECO dataset, we
achieved remarkable results. Notably, we successfully disaggregated 10 appliances more
than any previous multi-target work, achieving an impressive 87.02% accuracy using
just 20% of the dataset for training. Comparing our transfer learning approach to a
model with randomly initialized parameters, which achieved an accuracy of 82.53%,
underscores the significance of pre-trained knowledge in NILM tasks. While our results
are promising, there remains room for improvement in the original model to enhance
accuracy even further. Our overarching goal is to create a highly generalized model that
requires minimal fine-tuning, making it adaptable to a wide range of scenarios. This
entails harnessing larger and more diverse datasets to further advance the field of NILM
and contribute to energy conservation efforts.
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