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Abstract. Applying methods in artificial intelligence to the field of assistive robotics has 
the potential to increase the independence of people with disabilities. The usage of AI to 
realize a shared control in this context is controversial, due to the high complexity of 
everyday tasks and the needed safety requirements. This paper presents the development 
of a user interface for AI-driven assistive robotic arms (ARA) that aims to assist people 
with physical disabilities in performing daily activities. This interface allows the user to 
select object manipulation tasks based on the objects recognized in a live video stream. 
Further, we compare several state-of-the-art, real-time object detection models to facilitate 
automatic robotic control. The results demonstrate the feasibility of the model and its 
potential integration into the overall robotic system. 
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1 Introduction 

The growing need for technological assistance in caretaking leads to increased developments in 
the field of assistive robotics. Currently, assistive robotic systems offer the user the possibility 
to directly control an ARA through various control inputs, such as eye tracking [1]. Physically 
impaired people with paraplegia or tetraplegia can be assisted with assistive robotic arms 
(ARA). Few models are available on the market, such as JACO, MICO (Kinova) or the iARM 
(Assistive Innovations bv). These ARA can be mounted on an electric wheelchair or on the 
side of the bed for bed bound patients. Reasons for such paralysis can be spinal injuries, stroke 
and various diseases such as cerebral palsy, amyotrophic lateral sclerosis and multiple 
sclerosis. According to recent statistics published by the German Federal Statistical Office, 7,8 
million people in Germany have a severe disability of which approximately 1,6 million have a 
spinal or limb disability [2]. 
 The design of interfaces to support these people is a crucial part of making a system usable 
and accessible, and presents a variety of challenges. Combining an ARA with other 
technologies, such as smart home appliances, lead to new opportunities. For example, the work 
of Brunete et al. shows that the user could interact over a tablet with individual input interfaces 
to control a mobile platform, a robotic arm, as well as IoT devices such as the heating, lighting, 
and shutters [3]. Furthermore, ARA can be controlled by  joysticks, speech recognition, head 
or eye tracking, or even Brain Computer Interfaces (BCI). With the exception of joystick and 
voice control, most of these solutions are controlled via a display or tablet that provides the 
directional control of the robotic arm or selection of individual tasks the robot is capable of 
performing [4]. 



 

 

 In this context the question arises as to whether usability, measured e.g. by ease of use [5], 
can be facilitated through the use of AI by displaying selectable items for interaction on these 
displays. Available state-of-the-art computer vision models enable us to detect objects in real 
time. In addition, advances in robot automation allow robots to generalize control tasks such as 
object manipulation to novel objects and environments. 
In addition, a compromise must be found between the autonomy of the robot control and the 
controllability and interpretability by the user. Current work in AI and robotics shows 
promising results for the use of multimodal large language models (LLMs) to control robot 
agents [6, 7,8]. Here, tasks are given in natural language and the robot navigates and executes 
the given tasks based on the visual input. While this approach is promising for a variety of 
different use cases, most of the identified systems do not provide any visual feedback on which 
task or target objects have been identified or will be interacted with. In the context of assistive 
robotics, this can lead to a feeling of being at the mercy of a “black box” model. 
 In this work, we aim to develop a system that focuses on usability and accessibility by 
hiding the underlying complexity of robot control. This can be achieved through the use of an 
object detection model which simplifies the control and allows the user to accomplish complex 
tasks of everyday life. 

2 Methods 

2.1 System overview 
To meet the needs of paraplegic people, the HIRAC (Hardware Independent Robotic 
Assistance Controller) project is developing a robotic system that enables people to perform 
activities of daily living. 
 The system consists of an ARA that can be mounted on an electric wheelchair or at the 
bedside. The different components communicate via the Robot Operating System 2 (ROS2 
Humble Hawksbill). A camera is mounted on the robotic arm, allowing the user to move the 
field of view, which is necessary for bed-bound users. The touch display is mounted in the 
user’s line of sight and displays a live video stream for ease of use. 

2.2 Design of the User Interface (UI) 
The four principles of accessibility outlined in the Web Content Accessibility Guidelines can 
be applied to the user interface presented in this work. They include perceptibility, usability, 
understandability, and robustness [9]. They resemble the seven principles of universal design 
presented by Story, which were developed as a benchmark for product design so that “people 
of all ages and abilities” can use them without the need of adaptation [5]. They consist of 
Equitable Use, Flexibility in Use, Simple and Intuitive Use, Perceptible Information, Tolerance 
for Error, Low Physical Effort, and Size and Space for Approach and Use [5]. Based on these 
principles, a requirements analysis was conducted to determine the critical design elements for 
a UI with high usability satisfaction. Existing solutions for this use case were identified and 
compared to this system. For the target group of paraplegic and tetraplegic persons, 
refinements in the accessibility were made. Regarding these insights, a mockup of the user 
interface and the user flow are presented in the following. 

2.3 Evaluation methodology of the object detection network 
The YOLO algorithm has become widely adopted in a variety of applications where real-time 
inference is required. It performs exceptionally well in terms of inference speed and detection 



 

 

accuracy when compared to other real-time object detection algorithms such as Faster R-CNN 
(Faster Region based Convolutional Neural Networks) and SSD (Single Shot Detection) [10]. 
In addition, previous versions of YOLO have been successfully integrated with ROS2 [11], 
which is an essential part of the system. For these reasons, we decided to focus our attention on 
it. 
 
Proposed method 
Projects requiring real-time detection must consider the trade-off between accuracy and speed. 
Larger models tend to be slower in terms of FPS [12], but generally show better performance 
in terms of mAP (Mean Average Precision).  
 Therefore, we compare two different model sizes, nano (“n”) and small (“s”), from 
YOLOv5 [13] and YOLOv8 [14] (both pre-trained on the MS COCO dataset), trained with and 
without data augmentation. A Nvidia RTX A2000 Laptop GPU (4096MiB) is used for training 
and evaluation. 
 As for the evaluation metrics used in this comparison, the mAP50-95 allows us to assess 
the precision of the detections, while the FPS will allow us to measure the real-time processing 
speed of the model. The FPS in this paper is calculated on the basis of average speed of the 
detection in milliseconds when processing the validation set, as shown in Equation (1). These 
metrics, as well as the Average Precision and Recall, can be found in Tab. 2.            
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Dataset preparation 
We create a dataset of images and annotations of keys, pens, cups and glasses by merging three 
datasets [15, 16, 17]. Initial poor performance in the “pen” class due to class imbalance was 
addressed by increasing the number of examples in this class from three additional datasets 
[18, 19, 20]. The final dataset used for training can be found on Github [21]. 
 A data augmentation strategy is then implemented consisting of the modifications that 
showed the highest performance improvement: crops of up to 50% and Gaussian blur of up to 
2px. This allowed us to generate 4198 additional images in the training set (Tab. 1).  
As the objects to be detected are close and large, it is possible to train on smaller image sizes to 
decrease the training time. The images are trained over 10 epochs to see initial results. The 
image size used to train these networks is 320x320, then increased to 640x640 for the best 
performing networks trained over 40 epochs.  

 
Table 1. Distribution of the dataset into training, validation and test sets 

 Original Data aug. 

Class Train (70%) Valid (20%) Test (10%) Train (70%) 

Keys 603 193 86 1809 

Cup/Glass 1062 268 138 3186 

Pen 434 139 75 1302 

Total 2099 600 299 6297 

 



 

 

3 Results 

3.1 Design of a user interface for Assistive Robotics 
After identifying the target group, a requirements analysis was carried out. Regarding the 
outcomes of Story [5], it is theorized that the user’s cognitive workload can be reduced by 
automating the grasping process and task completion. With regard to the other benchmarks 
mentioned above, we focused on the usability and accessibility of the system. Several 
challenges were identified during the design process: 

 How to present the available tasks to the user? 
 How to ensure that the object detection model is able to identify the object and enable 

the task execution? 
 What safety measures are necessary to ensure the safety of the user? 
 What measures need to be taken to ensure usability and accessibility? 

 Safety regulations were not tested on the design, due to its early state. Controlling a robot at 
such a short distance to the user by AI raises new challenges and questions. Regulations of AI 
application are currently debated by the European Commission [22]. 
 First, the tasks were determined. Activities of Daily Living (ADL) are describing a set of 
everyday tasks for self-maintaining. They are listed by the International Classification of 
Functioning, Disability and Health (ICF) [23]. Severe physically disabled people mostly need 
assistance from another person for these tasks, as robots are not able to help in some ADL such 
as bathing. We narrowed down the range of tasks which are feasible for the robot such as 
picking and placing objects, pouring a drink and handing it to the user, as well as handing food 
to the user. With these tasks, basic independence can be regained. 
 Secondly, the object detection model which will be presented in the next section is able to 
handle a moving workspace, considering that the ARA will be mounted on an electric 
wheelchair. The position of the robot has to be adapted to present the desired object. This leads 
to the importance of directional control and a fixed robot observation orientation. This was 
achieved by arrows on the sides, top and bottom of the touch screen visible in Fig. 1 which 
move the robot in the x- and y-planes. The robot’s end effector is tilted around the y-axis at an 
angle of 35° to provide a bird’s eye view of the scene. When the required object is detected in 
the scene, the system displays the bounding box around the object.  
 The bounding boxes are clickable. Once one is selected, the available tasks are presented to 
the user. When a task is selected, a progress bar is displayed representing the time the robot 
needs to complete the task. 
 Thirdly, rudimental safety features must be considered, such as a stop button that interrupts 
the task itself. Furthermore, measures such as a reset button to bring the robot back into 
position are needed to free the arm for movement or to resolve inadequate robot positions. 
 Lastly, the usability and accessibility of the system was examined. The need to eliminate 
seizure triggers was identified and implemented. Basic settings such as adapting the font size, 
adding pictograms to the texts, simple language and the possibility of feedback were included. 
Specific settings for the robot include the ability to adjust the speed, which was mentioned by 
participants in a previous study. It was considered important to design the UI in such a way 
that other input modalities, such as eye tracking, could be implemented at a later stage to 
ensure accessibility, for example for people with locked-in syndrome. All identified features 
are shown in the user flow in Fig. 1. 
 
 



 

 

 
Fig. 1. User flow and mockup design of the user interface 

 

3.2 Performance evaluation of computer vision models 
Tab. 2 shows the results of training each network over 10 epochs with and without augmented 
data. Except for YOLOv8 trained on augmented data, there is a noticeable decrease in FPS as 
the network size was increased from “nano” to “small”. There is also a noticeable improvement 
in mAP for models trained on augmented data. The last rows represent the training of 
YOLOv8s and YOLOv5n over 40 epochs on augmented data. 
 
 
 
 
 



 

 

Table 2. Results of training various size networks on datasets with and without augmentation 

 Image 
size 

Aug. P R mAP50-
95: all 

mAP50-
95: keys 

mAP50-
95: 
pen 

mAP50-
95: 
cup 

mAP50-
95: 
glass 

FPS 

YOLOv5n 320px No 0.959 0.928 0.703 0.684 0.572 0.766 0.791 434.78 

YOLOv5s 320px No 0.94 0.928 0.71 0.717 0.54 0.773 0.808 260.55 

YOLOv8n 320px No 0.942 0.919 0.702 0.682 0.563 0.766 0.798 454.55 

YOLOv8s 320px No 0.936 0.934 0.723 0.725 0.576 0.795 0.795 333.88 

YOLOv5n 320px Yes 0.952 0.945 0.739 0.712 0.654 0.789 0.802 370.37 

YOLOv5s 320px Yes 0.941 0.947 0.738 0.736 0.619 0.788 0.81 336.63 

YOLOv8n 320px Yes 0.953 0.93 0.741 0.734 0.631 0.791 0.807 370.37 

YOLOv8s 320px Yes 0.945 0.949 0.748 0.751 0.633 0.8 0.809 419.90 

YOLOv5n 
(40 ep.) 

320px Yes 0.954 0.944 0.759 0.753 0.661 0.8 0.82 434.78 

YOLOv5n 
(40 ep.) 

640px Yes 0.954 0.954 0.775 0.782 0.666 0.825 0.83 487.8 

YOLOv8s 
(40 ep.) 

640px Yes 0.951 0.953 0.77 0.783 0.635 0.824 0.838 135.14 

 
YOLOv5n was particularly fast to train due to its small size and the dimensions of the training 
images (320x320px). The model achieved comparably high FPS on the validation set. Even 
when the size of the training images was increased to 640px, the training time was still about 
five times shorter than for YOLOv8s. This is an advantage in the future, as it could allow for 
faster parameter and dataset optimization. 
 

 
Fig. 2. Predictions on images from outside the dataset, the confidence of the object detections were pen 

0.9, cup 0.88 and keys 0.92. 
 



 

 

  Considering the high FPS achieved with YOLOv5n (trained on 640x640px images over 40 
epochs), the short training time and the improved mAP across classes, it is the object detection 
model we have chosen for this project. Fig. 2 shows exemplary predictions by YOLOv5n on 
images from outside of our dataset, demonstrating the model’s ability to generalize. 
 

4 Discussion 

4.1 Discussion on user flow and design elements of the UI 
The user flow shown in Fig. 1 shows the steps the user has to take to perform a task with the 
robot. The design of the interface was chosen to present buttons and the video image as large 
as possible to improve the usability for paralyzed people and to ensure the usability with other 
input methods such as eye tracking or BCIs. A reason is the low accuracy of head-mounted eye 
tracking devices. In BCIs flickering buttons are sometimes presented at different frequencies 
[24]. These differences are visible in the recorded brain activity data and a selection of the 
button can be made. As the eye is also constantly moving, large buttons provide a larger field 
in which the user could focus. For this reason, the directional control buttons were placed 
within the video frame.  
 The overlap of bounding boxes and arrows would create a new challenge. The risk of 
pressing the wrong button, known as the Midas Touch Problem in eye tracking and gaze 
recognition, has to be eliminated. As a precaution, the clickable bounding boxes are only 
displayed if the object is a certain distance from the arrows. This also leads to a better view of 
the object, which is helpful for trajectory planning. Before completing the task, the user is also 
prompted to confirm their selection. To avoid annoying behavior by appearing and 
disappearing bounding boxes, the detection threshold of the object can be manipulated within a 
certain range. This results in either faster detection of the objects which can be selected by the 
user or less flickering, which can reduce seizure triggers. 
 Finally, the approach only allows the user to click on one bounding box and execute a task 
with it. Complex tasks such as pouring a glass of water could be represented by selecting 
multiple bounding boxes e.g., glass and bottle. However, in the real world, the glass and the 
bottle would be seldom in the picture at the same time. A pouring task is represented as 
grasping the bottle, remembering that a bottle was grasped and as soon as the user selects the 
cup after the user moves it into the field of view, the pouring task is proposed. 

4.2 Discussion on the evaluation and results of the object detection algorithm 
The object detection model was able to achieve satisfactory results even after initial difficulties 
with, for example, the “pen” class. The object itself has a more challenging shape to detect in 
comparison to cups, for example. In addition to this, training data on pens was difficult to come 
by. 
 More generally, it was interesting to note that an increase in network size from “nano” to 
“small” did not always translate to an increase in performance. Some possible reasons for this 
are that the data was limited, the dataset not as diverse as would be ideal, and as the complexity 
of the model increased with size. It may not be large and diverse enough to support the model, 
potentially leading to the drop in performance. In addition, the bounding boxes were not all 
manually verified in each image. Some bounding box errors were corrected, such as the 
bounding boxes not fitting tightly enough around each object, leading to an increase in 



 

 

performance, but if any noisy or incorrect labels remained, a larger model would tend to 
amplify the impact of the errors, leading to a decrease in performance. 
 The main bottleneck to improve the performance of the object detection model would be 
the quality of the dataset, which could be solved in the future by creating a new dataset using 
frames from a stream of robotic arm in motion as this would lead to more domain-aware data 
than the available datasets, taking into account realistic angles the field of view could have 
from the perspective of a camera mounted on a robotic arm. It would also be possible to 
integrate objects such as specific types of cups commonly used in assistive care. 
 It is planned to combine the object detection network with the DeepSORT tracking 
algorithm. This type of algorithm would enable stable tracking of objects, even in situations 
where there is temporary partial or total occlusion of an object. When the object exits the field 
of view, its existence would not be instantly forgotten in a case where there are multiple 
objects of the same class available, for example. Solving these challenges will provide new 
insight in the design of AI-driven ARA user interfaces. 

5 Conclusion 

In this work we presented a user flow adapted for the use by physically impaired people. By 
automating task execution with a robot, it is assumed that the cognitive load of the user can be 
reduced. This shared control was realized by using object detection and linking tasks to the 
object classes. The best model was determined by evaluating FPS and mAP of different 
variations of YOLOv5 and YOLOv8. After training the models with data from various 
databases, YOLOv5n showed the best performance for this application. Part of future work is 
the development of an extended number of available tasks. Further, the usability will be tested 
with users and feedback will be collected. 
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