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Abstract. Autonomous cars encounter momentous challenges in the perception
tasks. The driving surrounding areas are more and more congested and the weather
conditions differ significantly. Sensors-wise the capacities have increased, leading
to an increasing interest in big data management such as artificial intelligence.
Currently, neural networks have proved their efficiency, but restraints in complex
situations are still present. In this work, a cross-fusion technique that combines
lidar and camera data using an encoder-decoder-based model is proposed. The
multi-modal architecture fuses different sources of information to circumvent en-
countered limitations. The considered perception task is semantic segmentation of
the different obstacles that may be encountered. The decision-making part of the
architecture is extended with the evidence theory, introducing belief functions that
contribute in handling uncertainties. Thus, the evidential formulation is versatile
and yields more precise predictions and a better understanding of the vacuous
data. The dataset used in this work employs the KITTI dataset for semantic
segmentation. The results show the interest of integrating evidential theory into
neural networks fusing information from two heterogeneous sensors.
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1 Introduction

One important task in autonomous driving is to perceive the environment to achieve
semantic analysis. This allows sending accurate information for the path planning and
the control part to be applied. For the vision of the car, perception adopts substantially
the deep learning-based approaches and the multi-sensor information to achieve strong
capabilities. A big part of the actual self-driving car features rely on neural networks,
especially deep learning, as their standard approach for perception tasks.

The popularity of this field soared when a deep convolutional neural network architec-
ture named AlexNet outperformed other methods in a visual recognition challenge called
ImageNet [1]. As a result, deep learning is now widely applied to various perception tasks
in self-driving cars, including classification, object detection, semantic segmentation, and
more [2, 3].

In this algorithm, the output of the prediction frequently depends on the sigmoid func-
tion for binary predictions and the softmax function for multi-class predictions. These
outputs represent probabilities assigned to a group of exclusive prediction categories.
Nonetheless, probabilities do not always consistently manage uncertainty effectively, as
they can struggle to distinguish between the absence of information and conflicting infor-
mation. Withal, performances are often affected, and probabilistic models can struggle

40



to predict uncertainties and conflicting information. Hence for uncertainties, missing in-
formation, and imprecision, there are other effective techniques that exist such as the
theory of evidence [4].

This theory, known as the Belief Functions (BF) theory or Dempster-Shafer theory
(DS/DST), was initially proposed by Dempster and Shafer [4]. DS theory serves to rep-
resent belief elements for uncertain models and emphasizes several key features such as
generality, operationality, or scalability [5]. In autonomous driving tasks, such as obstacle
avoidance, belief functions have demonstrated their ability to provide accurate results.
For instance, they improve the performance of LiDAR sensor occupancy grid maps by
representing conflicts in a more meaningful manner [6].

In detecting pedestrians applications, evidential combination rules have consistently
outperformed some Bayesian approaches [7]. Moreover, in multi-modal perception, evi-
dential theory sets itself through the handling of missing information, imprecision, and
ignorance.

In a multimodal approach, Xu et al. [8] integrated KITTI semantic segmentation im-
ages from various sensors, including cameras and different LiDAR layers. Their approach
enables the expansion of object classes or the integration of additional sensors, resulting
in improved performance and a better understanding of the drivable area.

In the context of self-navigation tasks relying on neural networks, as demonstrated
in [9], a deep learning architecture based on Multi-Layer Perceptron (MLP) has been
devised for the categorization of arbitrary LiDAR entities to enhance perception. This
architecture departs from the probabilistic approach and adopts an evidential inference
method, drawing inspiration from Denceux’s generalized logistic classifier [10].

The application of evidence theory is employed to represent elements of evidence
(beliefs) in the context of uncertain predictions by models. Consequently, the adoption
of an evidential formulation shows promising outcomes (road segmentation and multi-
object detection) in the realm of self-navigation embedded systems, which are the primary
focus of this work.

The objective of this work is to develop an evidential deep learning model that inte-
grates information from various sensors (camera and lidar) to enable autonomous driving
capabilities. The work aims to offer decision-making rules that can explicitly produce
cautious judgments to handle conflicts, whether originating from a single source of infor-
mation or multiple sources (data fusion).

A cross-fusion model is augmented with evidence theory to achieve semantic seg-
mentation performances within the KITTI dataset[11]. Thus, the workflow starts with
a probabilistic approach, where the predictions are road, vehicles, and background and
it is thereafter extended to an evidential formulation where the predictions are enlarged
with a new class named ignorance (introduced by the the evidence theory), despite being
trained on the road, vehicle, and background labels.

Through the leverage of theory-based belief functions, the model improves the decision-
making part and allows representing uncertain prediction, which constitutes the primary
contribution of this work.

The paper’s organization continues through the subsequent sections: Background
(covering the belief functions theory basics) Proposed method (illustrating some im-
plementation details about the evidential formulation), Semantic segmentation results
(encompassing data pre-processing and presenting results), and Conclusion.

41



2 Background

Evidence theory is a formal framework for making decisions in the presence of uncertainty.

One method of applying evidence theory is through the utilization of the Dempster-Shafer

rules. For a more comprehensive discussion, please refer to the following source: [12,13].
Consider a finite set comprising elements denoted as:

2 ={wi,wa,ws, ...,wp } (1)

called the frame of discernment (FoD). This collection represents mutually exclusive
elements of a single cardinality, called singletons.

A basic belief assignment (BBA) or a piece of evidence is characterized by a function
(mass functions) m : 2 — [0, 1] such that:

m(0) =0 (2)
1 (3)

ACQ

The quantity m(A), known as the mass function, measures the credibility that one ad-
heres exactly to hypothesis A; and (2) serving as an indicator of the closed world as-
sumption [14]. If m(A) > 0, A represents a focal element of m.

Considering a basic belief assignment m, two notions can be disclosed, a credibility or
a belief function (Bel) and a plausibility function (Pl) using the following expressions:

Bel(A) = > m(B) (4)
BCA

Pl(A)= > m(B)=1- Bel(A) (5)
BNA#)D

Bel(A) can be understood as the degree of total support to A, whereas PI(A) represents
the extent to which doubt is absent. A.

If the frame of discernment is represented by a single focal element that is (2, then
the BBA m is considered vacuous and characterizes total ignorance.

Two mass functions m; and ms representing independent pieces of evidence can be
merged by Dempster’s rule which is defined as follows:

(m1 ®mo)(A) = —— > mi(B)ma(C) (6)

For all A C 2, A # (), and (m; & ms)(0) = 0. The constant k represents the degree of
conflict of the two BBAs and is expressed as:

k= Y mi(B)ma(C) (7)

BNC=0

In this work, the previously established concepts from evidence theory are integrated
into an evidential framework that is plugged into a deep learning lidar-camera cross-fusion
architecture. The primary objective is to leverage the respective advantages of these two
frameworks to realize scene segmentation. The evidence theory is thus combined with the
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streamlined neural network referred to as Lite-CF, described in the next section. Origi-
nally designed as a probabilistic model for road detection, Lite-CF generates probability
distributions from logits through a softmax layer [15]. To improve the handling of pre-
diction uncertainty, an evidential approach recreates the last part of the architecture by
replacing the softmax layer and the associated logits with a belief theory-based approach.

3 Proposed method

To handle data from various sensors effectively, architectures have been devised, which
integrate multiple fusion methods such as late fusion, deep fusion, early fusion, and
others. In a prior study [15], a lidar-camera fusion approach named lite cross-fusion
was introduced, employing a fully convolutional neural network for road detection [16].
This deep fusion network demonstrated superior performance compared to early or late
fusion methods. Consequently, it was integrated into another work [15], resulting in a
reduction of computation complexity by over 15%. The model is built upon an encoder-
decoder architecture that employs dilated convolution to consolidate contextual details
while preserving resolution. This road detection fusion network serves as the foundation
for the research presented in this paper. On another hand, considering the combination
between evidence theory and neural network, [17] proposes an evidential classifier with
a distance to prototypes approach that replaces the softmax decision layer.

Considering the two previous methods, namely the aforementioned reduced cross-
fusion road detection (Lite-CF'), and the evidential classifiers, this paper introduces a
fusion of these two approaches. The combined architecture, Lite CF-Evi is a combination
designed for semantic segmentation tasks. The overall architecture of the evidential Lite-
CF is given in Fig. 1: The system comprises an encoder-decoder network, an evidential
formulation layer, and a decision-making unit. In the encoding segment, there exist two
processing pipelines, each consisting of 13 layers: one for feeding the LiDAR input and
the other for camera frames. At each layer, information from one modality is combined
with the corresponding layer from the other modality through a trainable weighted sum
operation (xb; and xa; respectively, where i is the layer number). These fusion weights
are adaptable, allowing the fusion’s position and its extent to be fixed by the data.

After the LiDAR and camera inputs are transformed into Basic Belief Assignments
(BBAs) within the evidential formulation layer, decisions can be rendered concerning
specific elements within the power set 2. In the context of semantic segmentation, this
power set encompasses elements such as “road”, “vehicle 7, and “background” elements
in the probabilistic version, and additionally “ignorance” in the evidential formulation.
Consequently, the evidential approach enables having an imprecise class prediction.

3.1 Evidential Inference

The evidential formulation layer takes as its input, the feature maps generated by the
decoding section. When the decoder reaches its maximum resolution, Basic Belief As-
signments (BBAs) are generated by assessing the distances between the corresponding
feature maps (i.e., L18 in Fig. 1) and prototypes. In this way, the prototypes are learnt
naturally, in an automatic manner. The technique is called distance to prototypes and it
can be described in three steps [18] as follows:

Step 1: Calculate the distance to prototype: Consider « to be a feature vector sym-
bolizing features of a pixel to be labeled possibly as road wi, vehicle wy or
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Fig. 1: Architecture Evidential Lite-CF (Lite CF-Evi)

background ws (i.e., the FoD 2 = {w;,ws,ws}). The Euclidean distance d* is
realized between x and each prototype p*:

d=lz-p'| i=1--,n (8)

Step 2: Establish the correspondence of mass functions to prototypes and their inter-
ference: Each prototype p* has a degree of membership uj to each class wy,

with a constraint u} + u% + u% = 1. Using the class membership u; and the
distance d*, a BBA m’ is constructed as:

mi)) = o Hd), =123 o)
m(Q) = 1 - alg(d"),

where 0 < o’ < 1 and the function ¢’ is defined as:
¢'(d') = exp(—*(d")?), 7' >0 (10)

Step 3: DS combination rule: The mass functions from step 2 are merged using Demp-
ster’s rule (see (6)). The outcome combined with BBAs serves as the evidence
for determining the pixel class.
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The parameters linked to the prototype p* (i.e., o/,uj-, and ~%), are intended to be
incorporated into the evidential deep learning-based architectures as weighting factors.
However, the learnable weights are not inherently restricted. Consequently, they are
redefined and expressed in terms of certain real-numbered variables 7, £, and 6;:

v =(n")? (11)
. 1

R sy g ), 12)

i (81 +e (13)

5 (32 +9

Equation (13) is slightly adjusted from the expression given in [18]. To prevent the mem-
bership values u; from becoming zero, a small positive value denoted as € is introduced.
This precautionary measure is taken to limit the conflicts that could lead to Dempster’s
total conflict.

3.2 Decision making

After assessing the BBAs representing the evidence for each pixel, the ultimate objective
is to decide the pixel classes. Initially, a decision based on interval distance is considered,
as outlined in [19]. Here’s an example with only 3 classes (in a semantic segmentation
task: road, vehicle, and background):

Case i) The decision is constrained to singletons: The possible judgment elements are
w1 (road), we (vehicle) and ws (background). In this situation, the expression
from [19] becomes:

X =arg  min dpr(m,mx) (14)

Xe{wi,wa,ws}

Case ii) The decision is not restricted: It could be interesting to consider assigning
ambiguous pixels to less precise classes within {2. The method can minimize
classification errors by circumventing decisions that have more of an arbitrary
nature.

4 Semantic segmentation results

4.1 Dataset

The aforementioned evidential cross-fusion model Lite-CF-Evi architecture is evaluated in
the context of segmentation tasks against the KITTI semantic segmentation dataset. This
dataset provides only 200 camera images similar to Stereo and Flow 2012/2015 datasets.
Unfortunately, the dataset has no LiDAR frames. Consequently, the corresponding 3D
point-cloud data for the camera images needs to be extracted from the big original raw
dataset, as outlined in [20] with all the images from the KITTI dataset for all the tasks.
Hence, 127 out of the 200 camera images have been successfully identified, along with
their respective LIDAR frames. These LiDAR frames are subsequently projected and up-
sampled to create dense depth images. A 3D LiDAR point x is mapped into a point y in
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the camera plane according to the KITTI projection P, rectification R and translation
T matrices:

y=PRTzx (15)
As the projected LiDAR scan is sparse, up-sampling is employed to generate a dense

depth map, as depicted in Fig. 2. The up-sampling process is implemented following the
method outlined in [15] and [21].

(a) Camera image (b) Projected and up-sampled LiDAR
points into the camera frame

Fig. 2: LiDAR pre-processing method

After the up-sampling process, the newly constructed dense depth images from LiDAR,
are integrated into the Lite-CF-Evi model in parallel with the camera images to feed the
two pipeline inputs of the architecture.

Concerning the ground truth, the masks are simplified to 3 classes: road (magenta),
vehicle (dark blue), and background (blue), according to the original annotation. The
road class is preserved, however, the vehicle class incorporates car, truck, and bus anno-
tations of the original ground truth. In turn, the background class encapsulates all the
other classes, except for the above-mentioned ones. Figure 3a shows an illustration with
an example of the original ground truth, while Figure 3b describes the simplified ground
truth. The dataset consisted of 127 images: 114 for training and 13 for validation. This
method has been exclusively assessed using the specially reconstructed KITTI semantic
dataset, which includes the added LiDAR frames for the evidential cross-fusion architec-
ture. To the best of the author’s knowledge, this dataset has not yet been examined by
any other methods, since LiDAR point clouds were included. The ground-truth masks
are one-hot encoded and class weight is applied to address the unbalanced data. Con-
secutively, the model is trained for 500 epochs using mean squared error loss and Adam
optimizer.

To measure the performances, the model is evaluated using the intersection-over-union
metric, denoted as loU, in accordance with the PASCAL VOC benchmark [22]:

TP

I —
U= TP T FPTFN

(16)

with TP, FP, and FN, respectively, true positive, false positive, and false negative.
The Lite-CF-Evi is evaluated for 3 classes in a probabilistic manner. It can be observed
that the global mean IoU, 0.92707, in the evidential architecture is higher than 0.92384
for the probabilistic model. Individually over each class, the evidential model outperforms
the probabilistic one (Table 4.1), and visually the results are better for the Lite-Cf Evi.
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Table 4.1: Model performance comparison

Model arch. mean IoU| mean IoU;oaq | mean IoUyepicle | mean IoUpackground
Probab. Lite-CF | 0.92384 0.92713 0.87118 0.97322
Lite-Cf Evi 0.92707 0.93163 0.87446 0.97513

(a) Original ground truth: semantic (b) Simplified ground truth, 3 classes:
road, vehicle, background

(c) Probabilistic Prediction Lite-CF: (d) Evidential Prediction with
road, vehicle, background Lite-CF-Evi: road, vehicle, background,
ignorance (white)

Fig. 3: Semantic segmentation results

One interesting part of the evidential formulation is that the decision-making can be
adapted to derive from a fixed number of classes (equal to the number of singletons)
to the maximum number of acts, |2?| — 1. However, often the desired decision elements
are considered just the singletons, which are the main classes and the uncertainties. The
third image below (Fig. 3c), on the left side represents the predicted image with the
probabilistic model.

Finally, the second image from the right bottom part, Fig. 3d represents the predicted
image with the evidential model (Lite-CF-Evi). It can be observed that classes road,
vehicle, and background exhibit slightly higher accuracy in their predictions, with road
class being notably precise. Furthermore, an additional class, denoted as “ignorance”
(depicted in white), effectively captures pixels associated with uncertain predictions. This
approach prevents the mis-classification of uncertain pixels into incorrect categories, a
scenario that may arise when utilizing a probabilistic approach.

“Ignorance” primarily manifests itself at the class boundaries, where the model fre-
quently provides errors in its predictions. Likewise, pixels from distant objects often lack
sufficient information, suggesting that the model encounters challenges in classifying them
due to data uncertainty. Consequently, these pixels are classified as “ignorance,” offering
improved comprehension and demonstrating the effectiveness of evidential reasoning in
managing uncertainties.
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5 Conclusion

In this paper, a camera-lidar fusion is proposed by using a deep learning architecture
combined with evidence theory for intelligent vehicles perception. The combination is
realized at the very last level, replacing the softmax decision with a decision based on
distance to prototypes. The introduction of ignorance as a decision element further im-
proves efficiency. Hence, distant points and ambiguous features can be categorized as
“ignorance” rather than being erroneously assigned to specific predictions. Future di-
rections involve enhancing the Lite CF-Evi model for various class configurations and
more intricate tasks while maintaining the computational efficiency needed for real-time
applications. Additionally, a more in-depth examination of the distribution and impact
of “ignorance” is intended to be explored.
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