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Abstract. Real-time motion prediction in a three dimensional environment is re-
quired for many application from autonomous cars to human robot collaboration
to free-fall sorting machines. The most widely distributed sensors for the detec-
tion of three-dimensional environments like time of flight cameras, lidar sensors,
stereo cameras or radar devices delivers point clouds or other formats that can
easily converted to point clouds. The high dimensionality of point clouds and even
voxel grids is a major challenge for real-time motion prediction. Most approaches
use a skeleton tracking algorithm for dimensionality reduction, which itself is very
error-prone. We investigated an approach consisting of a combination of two sep-
arately trained neural networks. We used a variational autoencoder for dimension
reduction combined with a long short-term memory or a gated recurrent units
network for time series prediction in latent space. We were able to show that it
is possible to make reliable motion predictions up to one second into the future,
depending on the motion.
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1 Introduction

Predicting human motion is crucial for human-machine interaction. Humans are adept
at predicting human motion, allowing us to collaborate with others. Navigate through
crowds without causing accidents, solving tasks together, or to defend ourselves against
attacking players in sports games are some examples. But even simple tasks such as
shaking hands require a reliable prediction of human movement.

For intelligent machines, predicting human motion is important for avoiding colli-
sions and enabling successful human-robot collaboration. It has already been applied to
autonomous driving, intelligent robots and human-robot collaboration. Most 3D human
motion prediction methods are based on skeletons [1-4]. Skeletons have the advantage
that their dimensions are small, for example 25 joint positions in the widely used Mi-
crosoft Kinect V2 skeleton tracker [5]. However, estimating the position of skeletal joints
is itself a challenging task with a non-negligible error. This error becomes much larger
when there are objects close to the person or when some parts are in shadow of other
objects.

In our approach, we work with voxel grids and reduce their dimension with a Varia-
tional Autoencoder (VAE). In the low-dimensional latent space, we use time series pre-
diction models, which have been used with good results in many other applications [6-8].
This has several advantages over skeleton tracking. We have information about the envi-
ronment that can influence the human’s motion, and we can also predict changes in that
environment.
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2 Hardware and software setup

For data collection, we used an assembly station with the task of building a Fischertechnik
model. The step-by-step instructions were projected on the worktop and the participants
could move a wooden cube to see the next step. A detailed description of the setup and
the task can be found in [9]. The data is captured using a RealSense D435 depth camera
mounted centrally at a height of 2.5 meters at the rear end of the worktop. In figure 1
the assembly workplace used in this work is shown.

Fig. 1: The assembly workplace used for data collection.

The complete workflow of our 3d human motion prediction algorithm is illustrated in
figure 2.

The depth camera (A) is mounted centrally at a height of 2.5 meter at the rear end
of the worktop, so that the worker is imaged from the front-up.

In the next step we use the GPU-Voxels library [10] (B) to convert the point cloud to
a voxel grid of size 64x64x64 voxels with the origin at the left rear corner of the worktop
and with the worktop as a ground plane. In a calibration phase, we record the empty
workspace and mark all the detected voxels as background and remove them from the
voxel grid. To speed up the following calculations we unite a cube of 8 voxels to a single
voxel if a minimum of 4 voxels are occupied in this cube. In this representation each voxel
has a length of 4cm and we observe a quadratic space of 1,28 meter length in each axis.
Our tests showed, that this is large enough for our use case.

Next, the voxel grid is used as input for the 3d convolutional VAE (C) where the
dimension is reduced to a vector of size 32. The architecture of our VAE and the reason
for the latent vector size are discussed in section 4.
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Fig. 2: The pipeline of our system for motion prediction on assembly workstations

We use this latent vector to predict the latent vector of the next time step. We use
different models, like Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN)
and Convolutional Neural Network (CNN), in this step (D). We train them and evaluate
their accuracy. They are described in section 5.

To get the predicted voxel grid, we decode the predicted latent vector with the decoder
of our VAE (E). If we want to predict more than one step, we have to calculate this for
every step.

For data collection, training and evaluation, we used a workstation with a 16-core
Intel 17 CPU, 64GB RAM and a NVIDIA GeForce RTX2080 Ti GPU.

3 Datasets

Because motion prediction does not require any labels in the dataset every dataset con-
taining time series of point clouds could be used. Nevertheless the most of the widely
used data sets for 3d human motion prediction only contain skeleton points or angles but
not the pointcloud data or depth data we need for our algorithm. In this section we will
introduce some datasets for motion prediction.

Human3.6M [13] is a large dataset with 3.6 million human poses and 17 scenarios.
For motion prediction only the scenarios are from interest. The dataset contains 3d joint
positions and angels and time-of-flight range data and some additional data not relevant
for human motion prediction. This is the most widely used dataset for human motion
prediction. Unfortunately, our account was not activated, so we did not get access to this
data set.

The CMU Panoptic Dataset [14] contains, aside to a large range of multi-person
scenarios, just 23 short recordings of single-person motions and each of them in different
scenarios. This makes it hardly suitable to train or evaluate our neural networks.

3DPW [15] is another large dataset containing many scenes in the wild. It contains
60 video sequences and more than 51000 indoor and outdoor poses. Because it do not
contain point clouds or depth data it is not suitable for our purpose.

G3D [16] is a large dataset of actions in computer games. It contains skeleton data
as well as depth data. Each of the 24 action is recorded 30 times with 10 different actors.
This dataset is suitable for our application but not used for the evaluation of any other
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motion prediction tasks. This led to our decision, that there is no advantage in using the
G3D dataset compared to our own dataset.

AMASS [17] dataset is a large dataset widely used for 3d motion prediction tasks.
Unfortunately this dataset only contains skeleton and surface shape data. Caused by the
missing point cloud data we can not use this dataset for our application.

The NTU RGB+D [18] Dataset contains 120 action recognition classes, most of them
are single person daily actions. It contains 114,480 video samples of an average length of
1.9 seconds. If we want to train our network to predict a time step 1 second in future, this
means, that we only have 0.9 seconds training data with no historical data we usually need
for prediction with Long Short-Term Memory (LSTM) oder Gated Recurrent Unit (GRU)
networks. This makes the NTU RGB+D Dataset not suitable for our application.

WBHM [19] dataset contains a total length of 7.68 hours. The long sequences would
be perfect for human motion prediction. However, the dataset unfortunately contains
neither point cloud nor depth data.

Because there is no dataset which fits well to our requirements, we collected two own
datasets. In the first dataset we collected many different human poses in order to train
the VAE with this data. Because balanced training data leads to better results [20], it
is important that the number of frames for each human pose is uniform distributed. We
recorded two persons for 15 minutes, grasping one part after the other, without building
the model.

The second dataset contains the recordings of the building process of the Fischertech-
nik models. It combines the model building parts with short sequences of picking up new
parts from the pick-by-light boxes. We recorded eight test subjects with durations be-
tween 16 and 48 minutes. In total we recorded 263 minutes.

4 Variational autoencoder architecture

The VAE is line symmetric. Due to better local dependency and fewer weights, we decided
to use 3d convolution layers instead of fully connected layers in a vanilla VAE. We
followed the architecture used by Brock et al. [11] but made some changes. We changed
the input layer to 50x50x50, the size of our voxel grid and adapted the size of the other
convolution layers to 16x16x16, 16x16x16 and 8x8x8 in the encoder part of our model.
The decoder is designed symmetrical to the encoder. We added a dropout layer after
each convolution layer for better generalisation changed the number of latent neurons to
the desired dimension of the latent space.

To find the best dimension of the latent space, we trained the 3d convolutional VAE
with latent dimensions of 16, 32 and 64. A latent dimension of 32 gave the best results
with an accuracy of 0.974.

5 Time series prediction

We decided to train and evaluate the time series prediction models separated from the
3d convolutional VAE because the training is faster and because the the training data
recorded for the prediction is less suited for training the VAE. Therefore, we give our hole
training data set to the VAE and use the sequences of latent vectors for the training of
our prediction models. We tested several different architectures and some of them with
different hyper-parameters.
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Multi-Layer Perceptron The architecture of MLP is poorly suited for time series
prediction. Nevertheless, we did not want to ignore them because of their simple structure
and the completeness of our comparison. We decided to use the past 10 time steps as
input, which corresponds to 320 neurons in the input layer. We evaluated two different
architectures. The first consists of one fully connected hidden layer with 500 neurons (Fig.
3 left) and the second of two fully connected hidden layers with 500 and 320 neurons .
We tested both variants for the prediction of the next time step and the prediction of
the next ten time steps (Fig. 3 right).

mlp_input | input: | [(None, 320)] mlp_input | input: | [(None, 320)]
InputLayer | output: | [(None, 320)] InputLayer | output: | [(None, 320)]
mlp hidden_1 | input: | (None, 320) mlp hidden_1 | input: | (None, 320)
Dense output: | (None, 500) Dense output: | (None, 500)
mlp output | input: | (None, 500) mlp output | input: | (None, 500)
Dense output: | (None, 32) Dense output: | (None, 320)

Fig.3: MLP with 1 hidden layer for the prediction of one time step (left) and MLP with
one hidden layer for the prediction of 10 time steps (right)

The mean squared error of the single layer network is with mse = 0.03 better than
the two-layer network (mse = 0.04) for the prediction of one step and they are equal for
the prediction of ten steps with mse = 0.07.

Convolutional Neural Network CNNs are well suited for time series prediction.
With convolution over time, they are good at learning temporal relationships due to
their structure. In our architecture a single 1d convolutional layer with 64 kernels of size
4. Tt is followed by a max pooling layer with kernel size 4 and after a flatten layer a
fully connected layer (Fig. 4). For the one step prediction the output layer consists of 32
neurons and for the prediction of 10 time steps of 320 neurons.

Single Layer Long Short-Term Memory Network LSTM has been the first type
of RNN to be used successfully in a wide range of applications, because they include
mechanisms to avoid vanishing and exploding gradients. Our LSTM network consists of
a single LSTM layer with the input and output layers of our MLP network (Fig. 5). For
multi step prediction we designed the LSTM like the MLP with a larger output layer for
10 time steps.

The results of our single layer LSTM is better than the MLP but with mse = 0.025
in the case of one step prediction and mse = 0.065 for predicting the next ten steps it is
still not very reliable.

Single Layer Gated Recurrent Unit Network GRUs are faster in the training
process. and in the application often with better results, compared to LSTM. We decided
to train a single layer GRU network and to compare it to the single layer LSTM. The
architecture is similar to the architecture of the LSTM network.
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[(None, 32, 10)]

[(None, 32, 10)] cnn_input input:
[(None, 32, 10)]

cnn_input | input:
[(None, 32, 10)] InputLayer | output:

InputLayer | output:

cnn_hidden 1 | input: | (None, 32, 10)
Conv1D output: | (None, 29, 64)

cnn_hidden 1 | input: | (None, 32, 10)
Conv1lD output: | (None, 29, 64)

(None, 29, 64) cnn_max_pooling | input: | (None, 29, 64)

(None, 7, 64) MaxPooling1D output: | (None, 7, 64)

cnn_max_pooling | input:
MaxPoolinglD | output:

cnn flatten | input: | (None, 7, 64)
Flatten output: | (None, 448)

cnn flatten | input: | (None, 7, 64)
Flatten output: | (None, 448)

input: | (None, 448)
output: | (None, 320)

cnn_output | input: | (None, 448) cnn_output
output: | (None, 32) Dense

Dense

Fig.4: CNN for single step prediction (left) and CNN for multi step prediction (right)

[(32, 32, 1)] Istm_input | input: | [(32, 32, 1)]

Istm_input | input:
InputLayer | output: | [(32, 32, 1)] InputLayer | output: | [(32, 32, 1)]

l

Istm input: (32,32,1) Istm input: (32,32,1)
LSTM | output: | (32, 32, 32) LSTM | output: | (32, 32, 32)
dense | input: | (32, 32, 32) dense | input: (32, 32, 32)
Dense | output: | (32, 32, 32) Dense | output: | (32, 32, 320)

Fig.5: LSTM with 1 hidden layer (left) and LSTM for multi step prediction (right)
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The single layer GRU network has mse = 0.024 for single step prediction and mse =
0.063 for multi step prediction. This is very similar to the single layer LSTM network.
Because it is faster then the LSTM network in both, training and run time, we decided
to use this network for our following tests.

Multi-Layer Gated Recurrent Unit Network Due to the best performance of the
single layer GRU network, we tried to give more complexity to the model by adding a
second GRU layer (Fig. 6). This architecture outperformed all other tested architectures
with mse = 0.0235 for single step prediction and mse = 0.060 for 10-step prediction.

gru_input | input: | [(None, 32, 10)] gru_input | input: | [(None, 32, 10)]
InputLayer | output: | [(None, 32, 10)] InputLayer | output: | [(None, 32, 10)]

gru_hidden 2 | input: | (None, 32, 10) gru_hidden 2 | input: | (None, 32, 10)

GRU output: | (None, 32, 64) GRU output: | (None, 32, 64)
gru_output | input: | (None, 32, 64) gru_output | input: (None, 32, 64)
Dense output: | (None, 32, 32) Dense output: | (None, 32, 320)

Fig.6: GRU network with two GRU layers.

6 Evaluation

In this chapter we take the best performing network architecture, the GRU network with
two layers of 32 and 64 cells and evaluate it in different settings. We use the recording of
one person for the evaluation. This net has a mse = 0.024 on the test data which is the
same we had on the validation data (Fig. 7). For the prediction of 10 time steps in future
it performs worse with mse = 0.075, but still better than all the other architectures we
tested.

To have an idea how good the network architecture performs for the prediction of
longer terms, we trained it for the prediction of one time step, 0.33, 0.66 and 1 second
in future. The results are shown in Table 1.

predicted time  |mean squared error
1 step (0.03 second) 0.024
10 step (0.33 second) 0.06
20 step (0.66 second) 0.09
30 step (1.00 second) 0.11

Table 1: Mean squared error for different prediction periods

Until now, we only looked at the predicted time series of latent vectors. Due to
the properties of the VAE, this correlates to the accuracy of the predicted voxel grids.
However, this needs to not be a linear relationship. For our hole algorithm, we have an
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Fig.7: The mean squared error over the training epochs on the training data (blue) and
the validation date (red).

accuracy of 6.624 for the prediction of a single step 0.33 seconds in future from voxel
map to voxel map.

7 Discussion

Biitepage et al. [2] [1] introduces a system using an autoencoder to predict motions based
on the angels of 24 joints of the human skeleton. They compared three methods to input
the timesteps to the autoencoder. In the first, the autoencoder is symmetrical, this means
the decoder can be seen as the approximate inverse of the encoder. In this model the
input of the autoencoder is only the actual time step and the output is one predicted
timestep.

In the second autoencoder some 1d convolutional layers are added in front of the
autoencoder input layer. Their kernels cover all the 24 joint angles and only fold over
time. The third autoencoder uses a graph neural network to model the connections
between the joints and to shrink the dimension of the input data before combining the
different time steps. They got the best results with the third model. It has a mean angle
error on the joint angles of 0.27 for prediction of 1 second and 0.15 for prediction of 0.08
seconds.

This result can not be compared to our result because we used voxel grids and
Biitepage used joint angles. We see, that the accuracy does not decrease as fast as in our
approach for long term prediction. However, Biitepage does not take into account the
error in the skeleton tracking algorithm.

Martinez et al. [21] introduced a sequence to sequence model to predict 57 joint angles
of the human skeleton. He used a single GRU layer with 1024 units and input and output
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layers of 57 neurons. They introduced a zero velocity model as baseline. They reached a
mean angle error of 1.15 for the prediction of 0.4 seconds and 0.36 for the prediction of
0.08 seconds. This result can not be compared to our result as already described above.

8 Conclusion

In summary, our algorithm is able to predict human motion 0.33 seconds into the future.
For long term prediction, our algorithm, like all time series prediction algorithms, has
some disadvantages compared to motion primitives.

The advantage of our algorithm is the omission of the skeleton tracking algorithm and
the generation of a voxel grid that can be used by state-of-the-art robot motion planning
algorithms without further conversion.

Due to the different data structures, it is not possible to compare the performance
of our algorithm with state-of-the-art algorithms. Butepage et al. [2] and [1] use an
autoencoder and Martinez et al. [21] use a GRU for short-term human motion prediction.
As the dataset they use contains only skeleton points, it is not possible to compare our
results with theirs. Generating voxel grids from the skeleton data and comparing the
results on this basis could be a solution for further work.
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