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Abstract. Description logics (DLs) are a well-known family of logics for managing
structured knowledge. They are the basis for widely used ontology languages. Experience
with the use of DLs in applications has shown that their capabilities are not sufficient for
every domain. In particular, the decision-making process requires the assessment of two
different, sometimes even contradictory influences on decision factors. On the one hand,
there are items that belong to certain classes or fulfill certain roles within logically complex
constructs, but these memberships are to some extent vague. On the other hand, individual
preferences can change depending on the person who drives the decision-making process.
Therefore, the challenge when building a framework of decision making, is to take these
influencing variables adequately into account by depicting and incorporating both aspects.
The paper shows how these requirements can best been modelled by combining fuzzy
description logic and weighted description logic. Whereas the first meets the requirement
to represent vagueness and ambiguity in ontologies, the second is able to express individual
preferences. In addition, the paper shows how to engineer an appropriate and suitable
architecture for this purpose.

Keywords: Ontology Learning, Weighted Description Logic, Fuzzy Logic, Decision
Making

1 Introduction

In many cases of decision making, expert knowledge is required. Human experts can identify
structural patterns of decision situations in order to model decision processes [1]. From a
cognitive-psychological point of view, decision making requires heuristics that ignores some of
the information to make decisions more quickly, more economically or more accurately. Being
able to work with vague information is critical when dealing with systems that are described by
complex ontologies and consist of many instances [2]. Decision making and argumentation
interact between processes that use logical thinking or heuristic reasoning. Therefore, it can be
argued, that intuitive processes allow access to some form of logical reasoning. But it is also
possible, that logic and rationality can be conceived as the domain of explicit higher-level forms
of processing.

To formalize this knowledge, description logics offer a powerful tool to structure knowledge
and support reasoning. When making decisions, it is often necessary not only to fulfill a set of
equivalent requirements but also to take individual preferences into account. This requires an
extension of common knowledge bases, the so-called decision bases, which are initially based
on multi-attribute utility theory (MAUT) [3]. Since then, various approaches have emerged.
Among others, the application of logic for decision and utility theoretical problems are given in
[4-6]. In situations where ambiguity occurs, an acknowledged approach is to augment the
framework by fuzzy logic, see [7,8]. However, in cases where individual preferences encounter
vague knowledge and assertions, neither decision bases nor fuzzy description logic can satisfy
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these paradigms by its own. To close the gap, this paper offers a framework to model ambiguity
and individual preferences at the same time. It brings together fuzzy description logic with
weighted description logic. For the ease of understanding, we will first introduce the architecture
which has been used in this specific context. Afterwards, to get a fine grasp of the combined
framework of weighted description logic and fuzzy description logic, we will familiarize the
reader with both separately. Initially, we establish the basics of weighted description logic.
Subsequently, we present the fuzzy description logics and focus how it supports the modelling
of ambiguous and vague knowledge. At the same time, the demarcation to probabilistic settings
is highlighted. After combining these two approaches, our fuzzy decision base framework is
introduced. Finally, we show how this framework can support the decision-making process
within the respective architecture.

2 Preliminaries

The following sections present our architecture for opinion and consensus mining OMA,
classical description logic and two extensions, the weighted description logic and fuzzy
description logic.

2.1  Opinion & Consensus Mining Architecture OMA

The original Opinion Mining Architecture (OMA) is part of a project of the same name. OMA
was used for the first time for sentiment analysis from tweets for the financial sector [9]. To
achieve an automated calculation of sentiment scores from texts, traditional approaches of
natural language processing (such as POS tagging, parsing) and machine learning from texts
(such as n-gram, syntactic/semantic features) were used for the preprocessing of the texts [10].
In addition, an extension of description logic [11], the so-called weighted description logic [6],
was used to automatically calculate the sentiment scores. The idea of separating the text
processing task (filtering out relevant phrases) and the decision support task (evaluating
extracted phrases) comes from the text understanding system SYNDIKATE [12] and its
qualitative calculus [4].

In order to explain the extension of OMA to include consensus mining and decision making,
we first clarify the essential components of the OMA. In Fig. 1 we see (from top to bottom):

— the , which accommodates models via compliances, rules, judgements, etc.
— the , which contains unweighted statements on the model of the
- (on the right side), that contain different preference models of experts

From a technical point of view, the models of the TBox are entirely expressed in description
logic by means of terminological concepts, roles and is-a-relations. The elements of the ABoXx
are terminological assertions that enter into an instance-of-relationship with concepts of the
TBox. At this point it should be noted that these assertions will be created by the text-processing
task from newspapers, social media, political programs, etc. (see the cloud on the left side in Fig.
1). The preference model of an expert € is shown in the U Box. A preference model consists of
a priori preference relation over attributes of concepts (see black circles in Fig. 1). Each model
represents the individual utility function of an expert € . With these a priori preference relations
of an expert a first a posteriori preference order for each expert’s choice can be derived (see the
individual preference orders in Fig. 1). Note that the preference model of each expert can be
extracted a priori by the text processing task or be entered directly by each expert. Next, the
individual preference relations of each expert are used to build consensus or in case of only one
expert to directly retrieve the best possible choice respective decision. The former is done by
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means of incomplete fuzzy preference relations for group decision making [13], which
repeatedly adapts the preference relations of all experts until a satisfying consistent consensus is
achieved. The theoretical basis of this approach comes from [14] and its IOWA operator. For
more details see [15].

Fig. 1. The Opinion & Consensus Mining Architecture OMA
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2.2 Description Logic

Description Logics (DLs) [11] are a family of logic-based knowledge representation formalisms.
They can be used to represent and reason on the knowledge of an application domain. The basis
of description logics is a common family of languages, known as description languages, which
have a set of constructors to ontologies consisting of create concept (class) and role (property)
descriptions.

A description language consists of an alphabet with unique concept names (), role names
() and individual (object) names ( ). In addition, so-called constructors are used to create
concept and role descriptions. Depending on which constructors are allowed, there are many
different description languages. Some of them form the basis for the ontology language of the
semantic web [16].

The SROJQ Description Logic. An expressive description language is called SROIQ-DL
[17]. SROIQ-DL is compatible with OWL2, the current standard of the semantic web [18] and
thus the most reasonable description language within the architecture introduced above. A formal
definition of the notions SROI9Q-roles and SROJIQ-concepts, as well as the underlying model-
theoretic semantics (the interpretation is written as , the domain as and the interpretation
function as - ) can be found in [17]. Below are some examples of the syntax and semantics of

SROIQ-DL:
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Table 1.: Example syntax and semantics of SROJQ-DL

Constructor Syntax Semantics

Top A

bottom

general negation - \

conjunction / disjunction / n_/

exists restriction . { - y }
value restriction - { C -y }
at-most restriction = { # (=}
at-least restriction = { # (=}
concept definition / concept specialisation = / = /

In DLs, we distinguish between terminological knowledge (so-called Bo0X) and assertional
knowledge (so-called Box). A Box is a set of concept inclusions and concept
definitions = . An Box is a set of concept assertions : as well as role assertions
¢, )

A so-called concrete domain  is defined as a pair ( ( ). isthe domainof and
pred( ) is the set of predicate names of . The following assumptions have been applied: n

= and for each () with arity n there is ( ) . According to [11],
functional roles are denoted with lower case letters, for example with . In description logics
with concrete precise domains, consists of functional roles and ordinary roles. A role is
functional if for every ( , ) and ( , ) it is necessary that = = . Functional
roles are explained as partial functions from  to x . Within SROIQ all statements
gathered about roles are captured in an Box, which for the sake of convenience and for
compatibility to the definitions in [11] is not applied to our examples.

Next, we will build a knowledge base (originally introduced in [9]) of a domain that will be
used in the further course of the work. Its purpose is pure illustrative, so that reasoning and
entailment is obvious. We will note explicit and implicit knowledge ( “- ik -”):

= { 1 1 1

, = > > e )
= > ., = = g
= = g = ,
= , = = )
, - ik -}
={ ( ,999€): ,( ,7109): ,
N G ): , ,
: , : , - ik -
: , ik -
: ( ,399€): ( ,12509) , ,
« . )
, : ( ,600€): , : ,
. : , - ik -
: ) : , =ik -
« . ): : - ik -}

A considerable amount of knowledge is implicitly revealed in the terminological knowledge
base. In this case, a lot of knowledge is available about the domain but no support to make a
comprehensible decision. For this reason, the capabilities of the knowledge base are extended by
the possibility to depict individual preferences.
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2.3 Weighted Description Logic

Weighted description logic (WDL) can be regarded as a generic framework, the so-called
decision base [6]. We use an a priori preference relation over attributes (called the ontological
classes). Thereby, an a posteriori preference relation over choices (called ontological
individuals) can be derived. Formally, a utility function over (the set of attributes) is defined
( © - ). Additionally, a utility function u defined over choices, which uses logical
entailment, extends the utility function U to the subset of choices [19]. Modelling attributes takes
place in two steps:

1. Each attribute is modelled by a concept
2. For every value of an attribute a new (sub)concept is introduced

For instance, if equipped is an attribute to be modelled, it is simply represented by the concept
(i.e. ). An equipment can be regarded as a value, as if it was a
concept of its own. If “well equipped ” is a value of the attribute equipped, the attribute set  is
simply extended by adding the concept , as a sub-concept of . It should
be noted, that an axiom is introduced to guarantee the disjointedness (e.g.
- ) and that this procedure results in a binary term vector for , because an
individual ¢ (as a choice) is either a member of a specific attribute of the concept set  or not.

Given a total preference relation (i.e. ) over an ordered set of not necessarily atomic
attributes , and a function : o that represents e, ()= ()
iff for ). The function  assigns an a priori weight to each concept

. Therefore, one can say, that “ makes the description logic weighted”. The utility of a
concept is denoted by (). The following applies: The greater the utility of an attribute
the more the attribute is preferable.

As mentioned above, a choice is an individual . denotes the finite set of choices. To
determine a preference relation (a posteriori) over  (i.e. ), which respects , a utility
function () is introduced. () indicates the utility of a choice relative to the attribute
set . Also, a utility function  over attributes as an aggregator is introduced. For simplicity,
the symbol s used for both choices and attributes whenever it is evident from the context.

Within a consistent knowledge base , ,consistingofa Box andan Box |,
the -utility is a particular and is defined as () { ()] and c. }andis
called the sigma utility of a choice . triggers a preference relation over ie., ( )=

( )iff . Each choice corresponds to a set of attributes, which is logically entailed e.g.

c. . Due to the criterion additivity, each selection corresponds to a result.

Putting things (DL, and ) together, a generic Box (so-called Utility Box) is defined as a
pair = ( , ), where is a utility function over  and is the utility function over
Also, a decision base is defined asa triple = ( , , ) where is the set of choices and

=(, )is an Box. Note: provides assertional information about the choices and
terminological information about the agent ability to reason over choices.

Now, we expand our tablet example by using different utility boxes () resp. utility
functions () of two experts:

— Forexpert 1 applies = {( ,50), ( ,40),
( ,40)},  ( )=40+40=80, ( ) =50 and
( ) = 40. It follows that .
— For the expert 2, however, applies ={( ,60),
( ,20),
( ,10)},  ( )=20+10=30, ( ) =60 and

() =20.It follows, that
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Within this decision base an expert with the utility box would classify as first choice
whereas an expert with a different utility box in this example would prefer . Two
different problems appear looking at . One is that for this tablet a weight (in the sense of
mass not weighting of a concept according to WDL sense) is not known. Therefore, the reasoning
fails doing an instance check for this tablet on the concept LightWeightTablet. For this reason,
when calculating the utility value, it is treated as it would not be an instance of
LightWeightTablet. But the membership of this concept is unknown, and one cannot reason that
the instance does not belong to the concept LightWeightTablet. The other problem is that at a
price of 600€, the tablet is neither inexpensive nor expensive (Inexpensivelablet resp.
ExpensiveTablet). Although the price is well-known, the utility function treats this tablet the
same way as expensive ones, which is not quite reasonable in this scenario. To eliminate this
problem the knowledge base is extended by fuzzy description logic and then combined with the
decision base, which is introduced in subsequent chapters.

24  Fuzzy Description Logic

To deal with the ambiguity of the underlying domain, it is necessary to clarify, where this
uncertainty comes from. Either the uncertainty is due to a probabilistic cause or due to vagueness.
If the first situation occurs, then a statement is either “true” or “false” to some possibility (in the
sense of likelihood), whereas in the second situation, a statement is to some degree (in the sense
of reaching a graded level) either “true” or “false”. For more information on these two
approaches, see [20].

In the context of the above choice of tablets, the underlying ambiguity arises from vagueness.
To model vague knowledge description logic is enriched with fuzzy logic, which enables
reflecting the degree of membership to a certain concept. According to [21] a fuzzy set is defined
by its characteristics the so-called membership function.

Let be anon-empty set of individuals, thena class in is characterized by its membership
function : - [0,1] and assigns to each a real number within the interval [0,1]. This
value represents how large the degree of its membership to  is. The membership function
defined for fuzzy sets fulfills some essential properties which appear to be natural, see also [22]:

- o= iff ()=0
- =\ ()=1- ()
- : )= ()

- : oo (O)=max( (), ()

- oot ()=minC (), ())

To augment the possibilities of fuzzy sets, algebraic operations can also be defined. There are
plenty of definitions e.g. Lukasiewicz logic, Godel logic. For a detailed comprehension of these
algebraic operations and their relation to DLs, see [23]. In this work, the standard fuzzy logic
(SFL) is used, but all others can be applied as well. Some definitions can be found in table 2.

This toolset of fuzzy set definitions and algebraic operators can now be applied to description
logics to reflect ambiguity and vagueness in knowledge bases. Hence, an individual that is an
instance of a concept only to a certain degree for example can be modelled suitably.

Table 2. Definitions of algebraic operations

Algebraic operator SFL
/ min( , )/max( , )
/ max(1— , )/1-
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To formally quote this fuzziness of description logic axioms we use the syntax of [7]. The
conceptional syntax of fuzzy description logics is the same as for description logics defined
above (see chapter 2.2). The semantic however reflects the fuzzy logic. Therefore, a fuzzy
interpretation is a pair = (A ,- ) consisting of a non-empty set called the domain and a fuzzy
interpretation function. This function maps individuals as usual and concepts into membership
functions A - [0,1]. Accordingly, the roles are mapped into A x A - [0,1]. Consequently
is the membership function of the fuzzy set . Hence, a concept is interpreted as fuzzy set.

Example
A specific tablet is an instance of the concept Convertable only to a certain degree depending on
its features. We therefore extend the description logic and allow capturing this degree as a fuzzy

value and write : ,0.8 . This means that 1s at least an instance of the
concept with the degree of 0.8. Analogously, () gives back the
minimal degree of being a convertable tablet under the interpretation

The properties of fuzzy sets and algebraic operators are now applied to interpretations of
SROIQ and, according to [24], lead to the following example rules for all A (non-

exhaustive list):
Table 3. Fuzzy semantics

Syntax Semantics

( ) () =min{ () )}
- =)0O=1- O
( ) =inf Q) Q)
( - )O)=sup p,{minC (. ) ()}

Example
Let  be the knowledge base above, but now the concept is not strictly
defined according to classic DL, but intuitively with the help of fuzzy DL. Within the Box, the
row < will be replaced by the following two
constructs:
,0.6
1

indicating that every tablet which has a weight less than 1100g should still be considered as a
light tablet to a certain degree (here 0.6). For the exact weight is not known but relating
information vary between 900g an 1100g with strong tendencies to the upper threshold.
Therefore the Box is adjusted accordingly:

,0.5 and : ) ,09. The Box reveals

= min : . , : . = min{0.5,0.9} = 0.5

and is therefore a w1th the minimal degree of max{1 — 0.5,0.6} =
0.6.

3 Weighted Fuzzy Description logic

For the weighted fuzzy description logic, the background knowledge base = ( , ) will be
allowed to capture also vague knowledge and assertions, which is formally notedas = ( , ).
This knowledge base is then extended by the set of choices and the utility box  steering the
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decision making. The advantage of this framework is, that these weights can be independently
articulated and do not need to be compared against each other like in [25].

Definition
Atriple =( , , ), where isa fuzzy knowledge base, a set of choices and a utility
box is called a fuzzy decision base.

Note: Entities of the Boxes are concepts relevant to the decision-making process, including
their specific individual weights. After the reasoning for each of the existing choices, the instance
check completes and reveals whether a choice belongs to a specific concept or not. Assume a

choice : belongs to a concept, then this might also be vague within the fuzzy description
logics. Hence it leads to constructs like : ,  with [0,1].

Definition

Let : , bea fuzzy assertionand ( , ) aweighted attribute, then a fuzzy utility value of c
respective to U is (:)

If the assertion is not fuzzy, then is simply set to 1. If the instance belongs to the
complement of  with a membership degree of 1, then the fuzzy utility value for on this
attribute is 0 (as  is then 0).

Example

In case for the calculated respective reasoned membership degree to a light weight tablet is
0.6, formally written : ,0.6 and expert  defines a weight of 40 for
this attribute, formally written as ( ,40), then ( ) =24. The

individual weight is a bit more than half of the initially defined one, as the degree of membership
for this tablet is only 0.6. As the utility function is additive the utility measure for a choice is the
sum across all relevant attributes.

Definition
Let =( , , ) beafuzzydecision base with a utility box  of the cardinality = | then
the  Box fuzzy utility value of ¢ is , > (: ).

By calculating the  Box fuzzy utility values of each choice c, a total ordering of the set  is
naturally given. The ideal solution is therefore the choice with the highest fuzzy utility value
relative to the Box.

Definition

Let =( , , )bea fuzzy decision base with a utility box  of the cardinality = | then
the ideal fuzzy choice is arg < (: ).

Example

For an expert with the utility box  the summarized utility value for is Y (: )=
24 + 40 = 64. The ranking of choices for this expert, changes to , which
means that is preferred to . In this scenario, the problem remains that the price of the

tablet is neither expensive nor inexpensive, but unknown. Therefore, it is indispensable to design
a consistent respective complete fuzzy decision base by ensuring that each attribute listed in the
Box is correct and decidable in the knowledge base.
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Definition
A fuzzy decisionbase = ( , , ) iscalled complete, if for every relevant attribute out of the
Box a fuzzy value for every is deducible: , [01]: : |,

Thus, the fundamentals are defined to make a reasonable decision in the above scenario.

4 Results and Outlook

To complete the fuzzy decision base of the example above, requires a fuzzy value for the
attribute “ ” and for « . Therefore the Box is
extended to reveal fuzzy values also for weights above 1100g and prices in between 500€ and
900€. The following expressions are added to the Box:

- : ,0
( : € . e) ,0.5
( . € . €) ,0.5

The first line indicates that tablets with a weight above 1100g do not belong to the concept
at all. The fuzzy values of the second and third line represent the
membership degrees of those tablets which have a price within this interval and is set manually
to 0.5 as arithmetic mean between the two categorizations inexpensive and expensive. Thus,
is a member of the concept Inexpensive with a degree of 0.5 and a member of Expensive
with the same degree.

With standard fuzzy logic the fuzzy value of a concept’s complement is: (= ) ( ) =1—

(), which entails the following implicit knowledge:

0
€
For example, if has the price of 999€, then the following applies:
: ,1 and T ,0

By means of this complete decision base the above decision can be derived properly. The
utility values for within  and  are:

( )=05-50+40+06-40 =89
( )=05:60+20+06-10=756

For an expert with the utility box is his or her first choice, while the other expert still
chooses . Through the augmented decision base by fuzzy logic a model is defined, which
represents reality much better. Because there was uncertainty around a first calculation in
a conventional decision base revealed a distorted result. By incorporating the vague knowledge
existing in this domain, the expert would have chosen instead of .The strength of this
framework is that vague assertions together with individual preferences are deliberated properly.

Also, it becomes obvious how weighting influences the decision. As the first utility box has
almost balanced weights, the second one has a strong tendency towards inexpensive tablets.

Using this  Box the first choice is still . But the second choice is now and not
Both tablets were initially not belonging to the concept , but with the help
of fuzzy logic, the strong preference for inexpensive tablets causes that passes

Summarized, complete fuzzy decision bases offer a strong possibility to model real world
situations which need to respect ambiguity and individual preferences and at the same time
support a comprehensible decision-making process. Further researches need to reveal supporting
algorithms to detect and locate incompleteness to support the creation of complete fuzzy decision
bases. Overall, the creation of these underlying ontologies is time-consuming and a non-trivial,
manual process. To facilitate this, new approaches with deep learning algorithms have risen [26].
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The use of such techniques is another milestone on the way to a fully automated decision making
process.
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