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Abstract.� Description� logics� (DLs)� are� a� well-known� family� of� logics� for� managing�
structured�knowledge.�They�are�the�basis�for�widely�used�ontology�languages.�Experience�
with�the�use�of�DLs�in�applications�has�shown�that�their�capabilities�are�not�sufficient�for�
every�domain.� In�particular,� the�decision-making�process� requires�the�assessment�of� two�
different,�sometimes�even�contradictory�influences�on�decision�factors.�On�the�one�hand,�
there�are�items�that�belong�to�certain�classes�or�fulfill�certain�roles�within�logically�complex�
constructs,�but�these�memberships�are�to�some�extent�vague.�On�the�other�hand,�individual�
preferences�can�change�depending�on�the�person�who�drives�the�decision-making�process.�
Therefore,� the�challenge�when�building�a�framework�of�decision�making,�is�to�take�these�
influencing�variables�adequately�into�account�by�depicting�and�incorporating�both�aspects.�
The� paper� shows� how� these� requirements� can� best� been�modelled� by� combining� fuzzy�
description�logic�and�weighted�description�logic.�Whereas�the�first�meets�the�requirement�
to�represent�vagueness�and�ambiguity�in�ontologies,�the�second�is�able�to�express�individual�
preferences.� In� addition,� the� paper� shows� how� to� engineer� an� appropriate� and� suitable�
architecture�for�this�purpose.�
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1 Introduction�

In�many�cases�of�decision�making,�expert�knowledge�is�required.�Human�experts�can�identify�
structural� patterns� of� decision� situations� in� order� to� model� decision� processes� [1].� From� a�
cognitive-psychological�point�of�view,�decision�making�requires�heuristics�that�ignores�some�of�
the�information�to�make�decisions�more�quickly,�more�economically�or�more�accurately.�Being�
able�to�work�with�vague�information�is�critical�when�dealing�with�systems�that�are�described�by�
complex� ontologies� and� consist� of� many� instances� [2].� Decision� making� and� argumentation�
interact�between�processes�that�use�logical�thinking�or�heuristic�reasoning.�Therefore,�it�can�be�
argued,�that�intuitive�processes�allow�access� to�some�form�of�logical�reasoning.�But�it� is�also�
possible,�that�logic�and�rationality�can�be�conceived�as�the�domain�of�explicit�higher-level�forms�
of�processing.�
To�formalize�this�knowledge,�description�logics�offer�a�powerful�tool�to�structure�knowledge�

and�support�reasoning.�When�making�decisions,�it�is�often�necessary�not�only�to�fulfill�a�set�of�
equivalent�requirements�but�also�to�take�individual�preferences� into�account.�This�requires�an�
extension�of�common�knowledge�bases,�the�so-called�decision�bases,�which�are�initially�based�
on�multi-attribute� utility� theory� (MAUT)� [3].� Since� then,� various� approaches� have� emerged.�
Among�others,�the�application�of�logic�for�decision�and�utility�theoretical�problems�are�given�in�
[4-6].� In� situations� where� ambiguity� occurs,� an� acknowledged� approach� is� to� augment� the�
framework�by�fuzzy�logic,�see�[7,8].�However,�in�cases�where�individual�preferences�encounter�
vague�knowledge�and�assertions,�neither�decision�bases�nor�fuzzy�description�logic�can�satisfy�



these�paradigms�by�its�own.�To�close�the�gap,�this�paper�offers�a�framework�to�model�ambiguity�
and� individual� preferences� at� the� same� time.� It� brings� together� fuzzy� description� logic� with�
weighted�description�logic.�For�the�ease�of�understanding,�we�will�first�introduce�the�architecture�
which�has�been�used�in�this�specific�context.�Afterwards,�to�get�a�fine�grasp�of�the�combined�
framework�of�weighted�description� logic�and� fuzzy�description� logic,�we�will� familiarize� the�
reader� with� both� separately.� Initially,� we� establish� the� basics� of� weighted� description� logic.�
Subsequently,�we�present�the�fuzzy�description�logics�and�focus�how�it�supports�the�modelling�
of�ambiguous�and�vague�knowledge.�At�the�same�time,�the�demarcation�to�probabilistic�settings�
is� highlighted.�After� combining� these� two�approaches,�our� fuzzy� decision� base� framework� is�
introduced.� Finally,� we� show� how� this� framework� can� support� the� decision-making� process�
within�the�respective�architecture.�

2 Preliminaries�

The� following� sections� present� our� architecture� for� opinion� and� consensus� mining� OMA,�
classical� description� logic� and� two� extensions,� the� weighted� description� logic� and� fuzzy�
description�logic.�

2.1 Opinion�&�Consensus�Mining�Architecture�OMA�

The�original�Opinion�Mining�Architecture�(OMA)�is�part�of�a�project�of�the�same�name.�OMA�
was�used� for�the� first� time�for�sentiment�analysis� from�tweets�for� the� financial� sector�[9].�To�
achieve� an� automated� calculation� of� sentiment� scores� from� texts,� traditional� approaches� of�
natural� language�processing� (such�as�POS� tagging,�parsing)� and�machine� learning� from�texts�
(such�as�n-gram,�syntactic/semantic�features)�were�used�for�the�preprocessing�of�the�texts�[10].�
In�addition,�an�extension�of�description�logic�[11],�the�so-called�weighted�description�logic�[6],�
was� used� to� automatically� calculate� the� sentiment� scores.� The� idea� of� separating� the� text�
processing� task� (filtering� out� relevant� phrases)� and� the� decision� support� task� (evaluating�
extracted� phrases)� comes� from� the� text� understanding� system� SYNDIKATE� [12]� and� its�
qualitative�calculus�[4].�
In�order�to�explain�the�extension�of�OMA�to�include�consensus�mining�and�decision�making,�

we�first�clarify�the�essential�components�of�the�OMA.�In�Fig.�1�we�see�(from�top�to�bottom):�
 the�ܶݔ݋��,�which�accommodates�models�via�compliances,�rules,�judgements,�etc.�
 theݔ݋����,�which�contains�unweighted�statements�on�the�model�of�the�ܶݔ݋���
 ௜ܷݔ݋���(on�the�right�side),�that�contain�different�preference�models�of�experts�

�
From�a�technical�point�of�view,�the�models�of�the�TBox�are�entirely�expressed�in�description�

logic�by�means�of�terminological�concepts,�roles�and�is-a-relations.�The�elements�of�the�ABox�
are� terminological� assertions� that� enter� into� an� instance-of-relationship� with� concepts� of� the�
TBox.�At�this�point�it�should�be�noted�that�these�assertions�will�be�created�by�the�text-processing�
task�from�newspapers,�social�media,�political�programs,�etc.�(see�the�cloud�on�the�left�side�in�Fig.�
1).�The�preference�model�of�an�expert�e୧�is�shown�in�the�U୧Box.�A�preference�model�consists�of�
a�priori�preference�relation�over�attributes�of�concepts�(see�black�circles�in�Fig.�1).�Each�model�
represents�the�individual�utility�function�of�an�expert�e୧.�With�these�a�priori�preference�relations�
of�an�expert�a�first�a�posteriori�preference�order�for�each�expert’s�choice�can�be�derived�(see�the�
individual�preference�orders� in�Fig.�1).�Note�that�the�preference�model�of�each�expert� can�be�
extracted�a�priori�by� the� text�processing� task�or�be�entered�directly�by�each�expert.�Next,� the�
individual�preference�relations�of�each�expert�are�used�to�build�consensus�or�in�case�of�only�one�
expert�to�directly�retrieve�the�best�possible� choice�respective�decision.�The�former� is�done�by�



means� of� incomplete� fuzzy� preference� relations� for� group� decision� making� [13],� which�
repeatedly�adapts�the�preference�relations�of�all�experts�until�a�satisfying�consistent�consensus�is�
achieved.�The�theoretical�basis�of�this�approach�comes�from�[14]�and�its�IOWA�operator.�For�
more�details�see�[15].�

Fig.�1.�The�Opinion�&�Consensus�Mining�Architecture�OMA 

  

2.2 Description�Logic�

Description�Logics�(DLs)�[11]�are�a�family�of�logic-based�knowledge�representation�formalisms.�
They�can�be�used�to�represent�and�reason�on�the�knowledge�of�an�application�domain.�The�basis�
of�description�logics�is�a�common�family�of�languages,�known�as�description�languages,�which�
have�a�set�of�constructors�to�ontologies�consisting�of�create�concept�(class)�and�role�(property)�
descriptions.��
A�description�language�consists�of�an�alphabet�with�unique�concept�names�( ஼ܰ),�role�names�

( ோܰ)�and�individual�(object)�names�( ூܰ).�In�addition,�so-called�constructors�are�used�to�create�
concept�and� role�descriptions.�Depending�on� which�constructors� are�allowed,� there� are�many�
different�description�languages.�Some�of�them�form�the�basis�for�the�ontology�language�of�the�
semantic�web�[16].�
�

The� �Description�Logic.�An�expressive�description� language� is�called�SROIQ-DL 
[17].�SROIQ-DL�is�compatible�with�OWL2,�the�current�standard�of�the�semantic�web�[18]�and�
thus�the�most�reasonable�description�language�within�the�architecture�introduced�above.�A�formal�
definition�of�the�notions�SROIQ-roles�and�SROIQ-concepts,�as�well�as�the�underlying�model-
theoretic�semantics�(the�interpretation�is�written�as� 󿿿,�the�domain�as߂�ூ��and�the�interpretation�
function�as� ∙ூ)�can�be�found�in�[17].�Below�are�some�examples�of�the�syntax�and�semantics�of�
SROIQ-DL:�
� �



Table�1.:�Example�syntax�and�semantics�of�SROIQ-DL�

Constructor� Syntax� Semantics�
Top� ⊤� Δℐ �
bottom� ⊥� ∅�
general�negation� ¬񯿿� ℐ\񯿿ℐ߂ �
conjunction�/�disjunction� 񯿿 ⊓ 򟿿�/�񯿿 ⊔ 򟿿� 񯿿ℐ ∩ 򟿿ℐ/�񯿿ℐ ∪ 򟿿ℐ�
exists�restriction� ∃ܴ. 񯿿� ݔ} ∈ .ݕ∃ ℐห߂ ,ݔ〉 〈ݕ ∈ ܴℐ ∧ y ∈ 񯿿ℐ}�
value�restriction� ∀ܴ. 񯿿� ݔ} ∈ .ݕ∀ ℐห߂ ,ݔ〉 〈ݕ ∈ ܴℐ → y ∈ 񯿿ℐ}�
at-most�restriction� ≤ ܴ݊� ݔ} ∈ ݕ}# ℐห߂ ∈ ,ݔ)ℐหܴℐ߂ {(ݕ ≤ ݊}�
at-least�restriction� ≥ ܴ݊� ݔ} ∈ ݕ}# ℐห߂ ∈ ,ݔ)ℐหܴℐ߂ {(ݕ ≥ ݊}�
concept�definition�/�concept�specialisation� 򟿿 ≡ 񯿿�/�򟿿 ⊑ 񯿿� 򟿿ℐ = 񯿿ℐ/�򟿿ℐ ⊆ 񯿿ℐ �
�
In�DLs,�we�distinguish�between�terminological�knowledge�(so-called�࣮Box)�and�assertional�

knowledge� (so-called� ࣛBox).� A� ࣮Box� is� a� set� of� concept� inclusions� 񯿿 ⊑ 򟿿� and� concept�
definitions� 񯿿 ≡ 򟿿.� An� ࣛBox� is� a� set� of� concept� assertions� ܽ: 񯿿� as� well� as� role� assertions�
(ܽ, ܾ): ܴ.��

A�so-called�concrete�domain�ࣞ�is�defined�as�a�pair�(ࣞ߂, ��is�the�domain�of�ࣞ�andࣞ߂�.((ࣞ)݀݁ݎ݌
pred(ࣞ)�is�the�set�of�predicate�names�of�ࣞ.�The�following�assumptions�have�been�applied:߂�ℐ ∩
ࣞ߂ = ∅� and� for� each� ܲ ∈ �(ࣞ)݀݁ݎ݌ with� arity� n� there� is� ܲࣞ ⊆ �.௡(ࣞ߂) According� to� [11],�
functional�roles�are�denoted�with�lower�case�letters,� for�example�with� ��In�description�logics.ݎ
with�concrete�precise�domains,� ோܰ�consists�of�functional� roles�and�ordinary�roles.�A�roleݎ�� is�
functional�if�for�every�(ݔ, (ݕ ∈ ,ݓ)��andݎ (ݖ ∈ ݔ��it�is�necessary�thatݎ = ⇒ ݓ ݕ = ��Functional.ݖ
roles� are� explained�as� partial� functions� from� �ℐ߂ to߂�ℐ  × ��Within�SROIQ.ࣞ߂  all� statements�
gathered� about� roles� are� captured� in� an� ℛBox,� which� for� the� sake� of� convenience� and� for�
compatibility�to�the�definitions�in�[11]�is�not�applied�to�our�examples.�

Next,�we�will�build�a�knowledge�base�(originally�introduced�in�[9])�of�a�domain�that�will�be�
used� in� the� further� course�of� the�work.� Its� purpose� is� pure� illustrative,� so� that� reasoning� and�
entailment�is�obvious.�We�will�note�explicit�and�implicit�knowledge�(“-�ik�-”):����

�

࣮ = ݁ܿ݅ݒ݁��} ⊑ ⊤, ݌݅ݑݍ�� ⊑ ⊤, ݁ܿ݅ݒ݁�� ⊓ ݌݅ݑݍ�� ⊑ ⊥, ݌݅ݑݍ��ݎ݋݋ܲ ⊑ ,݌݅ݑݍ�� ݌݅ݑݍ��݈݈ܹ݁ ⊑ �,݌݅ݑݍ��
݌݅ݑݍ��ݎ݋݋ܲ�� ⊓ ݌݅ݑݍ��݈݈ܹ݁ ⊑ ⊥, ݁ܿ݅ݒ݁�� ≡ ∃ℎܹܽ݃݅݁ݏℎݐ. >଴௚⊓ ∃ℎܽ݁ܿ݅ݎܲݏ. >଴€⊓ .݀݁݌݌݅ݑݍ݁∀ �,݌݅ݑݍ��
ݐ݈ܾ݁ܽܶ�� ≡ ݁ܿ݅ݒ݁�� ⊓ ∃ℎܽ݁ܿ݅ݎܲݏ. >ଶ଴଴€, ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊�� ≡ ݐ݈ܾ݁ܽܶ ⊓ ∃ℎܽ݁ܿ݅ݎܲݏ. ≤ହ଴଴€, �
ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ���� ≡ ݐ݈ܾ݁ܽܶ ⊓ ∃ℎܽ݁ܿ݅ݎܲݏ. ≥ଽ଴଴€,�󿿿݊݁ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ ≡ ��,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ��¬
ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ���� ≡ ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊��¬ ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ ≡ ݐ݈ܾ݁ܽܶ ⊓ ∃ℎܹܽ݃݅݁ݏℎݐ. ≤ଽ଴଴ ௚,���
݈ܾ݁ܽݐݎ݁ݒ݊݋���� ⊑ ,ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁݌݌ܷ ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁݌݌ܷ ≡ ݐ݈ܾ݁ܽܶ ⊓ .݀݁݌݌݅ݑݍ݁∀ �,݌݅ݑݍ��݈݈ܹ݁
ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁ݓ݋ܮ�� ≡ ݐ݈ܾ݁ܽܶ ⊓ .݀݁݌݌݅ݑݍ݁∀  ,݌݅ݑݍ��ݎ݋݋ܲ
ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁݌݌ܷ�� ⊓ ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁ݓ݋ܮ ⊑ ⊥,������ � � � � -�ik�-}�
ࣛ = :ଵܾܽݐ} ,ݐ݈ܾ݁ܽܶ ,ଵܾܽݐ) 999€): ℎܾܽܽݐ)��,݁ܿ݅ݎܲݏଵ, 710g): ℎܹܽ݃݅݁ݏℎݐ, 
:ଵݐ݊݁݉݌݅ݑݍ݁��� ,ଵܾܽݐ) ,݌݅ݑݍ��݈݈ܹ݁ .݀݁݌݌݅ݑݍ݁∀�:�(ଵݐ݊݁݉݌݅ݑݍ݁ �,݌݅ݑݍ��݈݈ܹ݁
:ଵܾܽݐ��� :ଵܾܽݐ� ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ�� ����������������������������������,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ � � -�ik�-� 
ܽݐ    ଵܾ: ������������,ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁݌݌ܷ -�ik�-��
:ଶܾܽݐ��� ,ݐ݈ܾ݁ܽܶ ,ଶܾܽݐ) 399€): ℎܾܽܽݐ)� ,݁ܿ݅ݎܲݏଶ, 1250g) ∶ ℎܹܽ݃݅݁ݏℎݐ, :ଶݐ݊݁݉݌݅ݑݍ݁  ,݌݅ݑݍ��ݎ݋݋ܲ
,ଶܾܽݐ)��� (ଶݐ݊݁݉݌݅ݑݍ݁ ∶
.݀݁݌݌݅ݑݍ݁∀ :ଷܾܽݐ,݌݅ݑݍ��ݎ݋݋ܲ ,ݐ݈ܾ݁ܽܶ ,ଷܾܽݐ) 600€): ℎܽ݁ܿ݅ݎܲݏ, :ଷܾܽݐ �,݈ܾ݁ܽݐݎ݁ݒ݊݋��
�� :ଶܾܽݐ ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊�� :ଶܾܽݐ ��������������������������,ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁ݓ݋ܮ � -�ik�-���
:ଷܾܽݐ��� ,ݐ݈ܾ݁ܽܶݏݏ݈ܽܿݎ݁݌݌ܷ :ଷݐ݊݁݉݌݅ݑݍ݁ ���������������������������������������,݌݅ݑݍ��݈݈ܹ݁ -�ik�-�
,ଷܾܽݐ)�� :(ଷݐ݊݁݉݌݅ݑݍ݁ .݀݁݌݌݅ݑݍ݁∀ �������݌݅ݑݍ��݈݈ܹ݁ � � � � -�ik�-}�

A�considerable�amount�of�knowledge�is�implicitly�revealed�in�the�terminological�knowledge�
base.�In�this�case,�a�lot�of�knowledge�is�available�about�the�domain�but�no�support�to�make�a�
comprehensible�decision.�For�this�reason,�the�capabilities�of�the�knowledge�base�are�extended�by�
the�possibility�to�depict�individual�preferences.��



2.3 Weighted�Description�Logic�

Weighted� description� logic� (WDL)� can� be� regarded� as� a� generic� framework,� the� so-called�
decision�base�[6].�We�use�an�a�priori�preference�relation�over�attributes�(called�the�ontological�
classes).� Thereby,� an� a� posteriori� preference� relation� over� choices� (called� ontological�
individuals)�can�be�derived.�Formally,�a�utility�function�ܷ�over�ࣲ �(the�set�of�attributes)�is�defined�
(ܷ: ࣲ → ℝ).� Additionally,� a� utility� function� u� defined� over� choices,� which� uses� logical�
entailment,�extends�the�utility�function�U�to�the�subset�of�choices�[19].�Modelling�attributes�takes�
place�in�two�steps:��
1. Each�attribute�is�modelled�by�a�concept��
2. For�every�value�of�an�attribute�a�new�(sub)concept�is�introduced�

For�instance,�if�equipped�is�an�attribute�to�be�modelled,�it�is�simply�represented�by�the�concept�
ݐ݊݁݉݌݅ݑݍ����.i.e)�ݐ݊݁݉݌݅ݑݍ�� ∈ ࣲ).�An�equipment�can�be�regarded�as�a�value,�as�if�it�was�a�
concept�of�its�own.�If�“well�equipped”�is�a�value�of�the�attribute�equipped,�the�attribute�set�ࣲ�is�
simply�extended�by�adding�the�concept�ܹ݈݈݁݌݅ݑݍ��,�as�a�sub-concept�ofݐ݊݁݉݌݅ݑݍ��� .�It�should�
be� noted,� that� an� axiom� is� introduced� to� guarantee� the� disjointedness� (e.g.� � ⊒ ݌݅ݑݍ��ݎ݋݋ܲ
�(݌݅ݑݍ��݈݈ܹ݁¬  and� that� this� procedure� results� in� a� binary� term� vector� for� ࣲ,� because� an�
individual�c�(as�a�choice)�is�either�a�member�of�a�specific�attribute�of�the�concept�set�ࣲ�or�not.�

Given� a� total� preference� relation� (i.e.� �≽ࣲ)� over� an� ordered� set� of� not� necessarily� atomic�
attributes� ࣲ,� and� a� function� ܷ: ࣲ → ℝ� that� represents� ≽� (i.e.,� ܷ(ܺଵ) ≥  ܷ(ܺଶ)�
iff  ଵܺ ≽ࣲ  ܺଶ for ଵܺ, ܺଶ ∈ ࣲ).�The�function�ܷ�assigns�an�a�priori�weight�to�each�concept�ܺ ∈
ࣲ.�Therefore,�one� can� say,� that� “ܷ�makes� the� description� logic� weighted”.� �The� utility� of� a�
concept�ܺ ∈ ࣲ�is�denoted�by�ܷ(ܺ).�The�following�applies:�The�greater�the�utility�of�an�attribute�
the�more�the�attribute�is�preferable.��

As�mentioned�above,�a�choice�is�an�individual�ܿ ∈ ூܰ.�ࣝ�denotes�the�finite�set�of�choices.�To�
determine� a�preference� relation� (a�posteriori)�over�ࣝ� (i.e.� �≽ࣝ),�which� respects�≽ࣲ,� a�utility�
functionݑ�(ܿ) ∈ ℝ�is�introduced.ݑ�(ܿ)�indicates�the�utility�of�a�choice�ܿ�relative�to�the�attribute�
set�ࣲ.�Also,�a�utility�function�ܷ�over�attributes�as�an�aggregator�is�introduced.�For�simplicity,�
the�symbol�≽�is�used�for�both�choices�and�attributes�whenever�it�is�evident�from�the�context.��

Within�a�consistent�knowledge�base�ࣥ ≔ 〈࣮, ࣛ〉,�consisting�of�a�࣮Box�࣮�and�an�ࣛBox�ࣛ,�
theߪ�-utility�is�a�particularݑ��and�is�defined�asݑ�ఙ(ܿ) ≔  ∑{ܷ(ܺ) | ܺ ∈ ࣲ and ࣥ ⊨ c: ܺ}�and�is�
called�the�sigma�utility�of�a�choice�ܿ ∈ ఙ(ܿଵ)ݑ�,.ఙ triggers�a�preference�relation�over�ࣝ�i.eݑ�. ࣝ ≥
ఙ(ܿଶ) iff ܿଵݑ ≽ ܿଶ.�Each�choice�corresponds�to�a�set�of�attributes,�which�is�logically�entailed�e.g.�
ࣥ ⊨ c: ܺ.�Due�to�the�criterion�additivity,�each�selection�ܿ�corresponds�to�a�result.�

Putting�things�(DL,�ܷ�andݑ�)�together,�a�generic�࣯Box�(so-called�Utility�Box)�is�defined�as�a�
pair�࣯ ∶= ,ఙݑ) ܷ),�where�ܷ� is�a�utility� function�over�ࣲ�andݑ�ఙ� is� the�utility� function�over�ࣝ.�
Also,�a�decision�base�is�defined�as�a�triple�򟿿 = (ࣥ, ࣝ, ࣯)�where�ࣝ ⊆ ூܰ�is�the�set�of�choices�and�
࣯ = ,ݑ) ܷ)� is� an� ࣯Box.� Note: ࣥ� provides� assertional� information� about� the� choices� and�
terminological�information�about�the�agent�ability�to�reason�over�choices.��

Now,�we�expand�our�tablet�example�by�using�different�utility�boxes�(࣯௜)�resp.�utility�
functions�(ݑ௜,ఙ)�of�two�experts:�
 For�expert�1�applies�࣯ଵ = ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊��)} ,ݐ݈ܾ݁ܽܶݏݏ݈ܽ��ݎ݁݌݌ܷ)�,(50 40),�

,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ) (ଵܾܽݐ)ଵ,ఙݑ�,{(40 = 40 + 40 = (ଶܾܽݐ)ଵ,ఙݑ�,80 = 50�and�
(ଷܾܽݐ)ଵ,ఙݑ = 40.�It�follows�thatܾܽݐ�ଵ ≻ ଶܾܽݐ ≻ �.ଷܾܽݐ

 For�the�expert�2,�however,�applies�࣯ଶ = ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊��)} 60),�
,ݐ݈ܾ݁ܽܶݏݏ݈ܽ��ݎ݁݌݌ܷ) 20), 
,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ) (ଵܾܽݐ)ଶ,ఙݑ�,{(10 = 20 + 10 = (ଶܾܽݐ)ଶ,ఙݑ�,30 = 60�and�
(ଷܾܽݐ)ଶ,ఙݑ = 20.�It�follows,�thatܾܽݐ�ଶ ≻ ଵܾܽݐ ≻ �.ଷܾܽݐ



Within�this�decision�base�an�expert�with�the�utility�box�࣯ଵ�would�classifyܾܽݐ�ଵ�as�first�choice�
whereas� an� expert� with� a� different� utility� box� in� this� example� ࣯ଶ� would� prefer� �.ଶܾܽݐ Two�
different�problems�appear�looking�atܾܽݐ�ଷ.�One�is�that�for�this�tablet�a�weight�(in�the�sense�of�
mass�not�weighting�of�a�concept�according�to�WDL�sense)�is�not�known.�Therefore,�the�reasoning�
fails�doing�an�instance�check�for�this�tablet�on�the�concept�LightWeightTablet.�For�this�reason,�
when� calculating� the� utility� value,� it� is� treated� as� it� would� not� be� an� instance� of�
LightWeightTablet.�But�the�membership�of�this�concept�is�unknown,�and�one�cannot�reason�that�
the�instance�does�not�belong�to�the�concept�LightWeightTablet.�The�other�problem�is�that�at�a�
price� of� 600€,� the� tablet� is� neither� inexpensive� nor� expensive� (InexpensiveTablet� resp.�
ExpensiveTablet).�Although� the�price� is�well-known,� the� utility� function� treats� this� tablet� the�
same�way�as�expensive�ones,�which� is�not�quite� reasonable� in�this�scenario.�To�eliminate�this�
problem�the�knowledge�base�is�extended�by�fuzzy�description�logic�and�then�combined�with�the�
decision�base,�which�is�introduced�in�subsequent�chapters.�

2.4 Fuzzy�Description�Logic�

To� deal� with� the� ambiguity� of� the� underlying� domain,� it� is� necessary� to� clarify,� where� this�
uncertainty�comes�from.�Either�the�uncertainty�is�due�to�a�probabilistic�cause�or�due�to�vagueness.�
If�the�first�situation�occurs,�then�a�statement�is�either�“true”�or�“false”�to�some�possibility�(in�the�
sense�of�likelihood),�whereas�in�the�second�situation,�a�statement�is�to�some�degree�(in�the�sense�
of� reaching� a� graded� level)� either� “true”� or� “false”.� For� more� information� on� these� two�
approaches,�see�[20].��

In�the�context�of�the�above�choice�of�tablets,�the�underlying�ambiguity�arises�from�vagueness.�
To� model� vague� knowledge� description� logic� is� enriched� with� fuzzy� logic,� which� enables�
reflecting�the�degree�of�membership�to�a�certain�concept.�According�to�[21]�a�fuzzy�set�is�defined�
by�its�characteristics�the�so-called�membership�function.��

Let�ܺ�be�a�non-empty�set�of�individuals,�then�a�class���in�ܺ�is�characterized�by�its�membership�
function� ஺݂: ܺ → [0,1]�and�assigns�to�eachݔ� ∈ ܺ a�real�number�within�the� interval�[0,1].�This�
value� represents� how� large� the� degree�of� its�membership� to��� is.� �The�membership� function�
defined�for�fuzzy�sets�fulfills�some�essential�properties�which�appear�to�be�natural,�see�also�[22]:�

 ∀ݔ ∈ ܺ: � = ∅ iff� ஺݂(ݔ) = 0    �
 ∀ݔ ∈ ܺ: �ᇱ = ܺ\�: ݂஺ᇲ(ݔ) = 1 − ஺݂(ݔ)�
 ∀ݔ ∈ ܺ: � ⊆ 𿿿: ஺݂(ݔ) ≤ ஻݂(ݔ)    �
 ∀ݔ ∈ ܺ: � ∪ 𿿿: ஺݂∪஻(ݔ) = max ( ஺݂(ݔ), ஻݂(ݔ))    �
 ∀ݔ ∈ ܺ: � ∩ 𿿿: ஺݂∩஻(ݔ) = min ( ஺݂(ݔ), ஻݂(ݔ)) �
To�augment�the�possibilities�of�fuzzy�sets,�algebraic�operations�can�also�be�defined.�There�are�

plenty�of�definitions�e.g.�Łukasiewicz�logic,�Gödel�logic.�For�a�detailed�comprehension�of�these�
algebraic�operations�and�their�relation�to�DLs,�see�[23].��In�this�work,�the�standard�fuzzy�logic�
(SFL)�is�used,�but�all�others�can�be�applied�as�well.�Some�definitions�can�be�found�in�table�2.��

This�toolset�of�fuzzy�set�definitions�and�algebraic�operators�can�now�be�applied�to�description�
logics�to�reflect�ambiguity�and�vagueness�in�knowledge�bases.�Hence,�an�individual�that�is�an�
instance�of�a�concept�only�to�a�certain�degree�for�example�can�be�modelled�suitably.�

Table�2.�Definitions�of�algebraic�operations�

Algebraic�operator� SFL�
ܽ⨂ܾ�/�ܽ⨁ܾ� min (ܽ, ܾ)�/�max (ܽ, ܾ)�
ܽ ⇒ ܾ�/�⊖ ܽ� max(1 − ܽ, ܾ)�/�1 − ܽ�

� �



To�formally�quote�this�fuzziness�of�description�logic�axioms�we�use� the�syntax�of�[7].�The�
conceptional� syntax�of� fuzzy� description� logics� is� the� same�as� for�description� logics�defined�
above� (see� chapter� 2.2).� The� semantic� however� reflects� the� fuzzy� logic.� Therefore,� a� fuzzy�
interpretation�is�a�pair�ℐ = (Δℐ,∙ℐ)�consisting�of�a�non-empty�set�called�the�domain�and�a�fuzzy�
interpretation�function.�This�function�maps�individuals�as�usual�and�concepts�into�membership�
functions�Δℐ → [0,1].�Accordingly,�the�roles�are�mapped�into�Δℐ × Δℐ → [0,1].�Consequently�ࣝℐ�
is�the�membership�function�of�the�fuzzy�set�񯿿.�Hence,�a�concept�is�interpreted�as�fuzzy�set.�
�
Example��
A�specific�tablet�is�an�instance�of�the�concept�Convertable�only�to�a�certain�degree�depending�on�
its�features.�We�therefore�extend�the�description�logic�and�allow�capturing�this�degree�as�a�fuzzy�
value�and�write� :ଷܾܽݐ〉 ,݈ܾ݁ܽݐݎ݁ݒ݊݋�� 0.8〉.�This�means� that� �ଷܾܽݐ is�at� least� an�instance�of� the�
concept݈ܾ݁ܽݐݎ݁ݒ݊݋����with�the�degree�of�0.8.�Analogously,݈ܾ݁ܽݐݎ݁ݒ݊݋��� ℐ(ܾܽݐଷ)�gives�back�the�
minimal�degree�ofܾܽݐ�ଷ�being�a�convertable�tablet�under�the�interpretation�ℐ.��
The� properties� of� fuzzy� sets� and� algebraic� operators� are� now� applied� to� interpretations� of�

SROIQ� and,� according� to� [24],� lead� to� the� following� example� rules� for� all� ݀ ∈ Δℐ� (non-
exhaustive�list):�

Table�3.�Fuzzy�semantics�

Syntax� Semantics�
񯿿 ⊓ 򟿿� (񯿿 ⊓ 򟿿)ℐ(݀) = min{񯿿ℐ(݀), 򟿿ℐ(݀)}�

¬񯿿� (¬񯿿)ℐ(݀) = 1 − 񯿿 ℐ(݀)�
񯿿 ⊑ 򟿿� (񯿿 ⊑ 򟿿)ℐ = infௗ∈୼ℐ 񯿿ℐ(݀) ⇒ 򟿿ℐ(݀)�
∃ܴ. 񯿿� (∃ܴ. 񯿿)ℐ(ܽ) = sup௕∈∆ℐ{min(ܴℐ(ܽ, ܾ), 񯿿ℐ(ܾ))}�

�
Example�
Let�ࣥ�be�the�knowledge�base�above,�but�now�the�concept݃݅ܮ�ℎܹ݃݅݁ݐℎݐ݈ܾ݁ܽܶݐ�is�not�strictly�
defined�according�to�classic�DL,�but�intuitively�with�the�help�of�fuzzy�DL.�Within�the�࣮Box,�the�
row� � ∃ℎܹܽ݃݅݁ݏℎݐ. ≤ଽ଴଴௚⊑ �will ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ be� replaced� by� the� following� two�
constructs:�

〈൫∃ℎܹܽ݃݅݁ݏℎݐ.ஹଽ଴଴௚⊓ ∃ℎܹܽ݃݅݁ݏℎݐ.ஸଵଵ଴଴௚ ൯ ⊑ ,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ 0.6〉�
〈∃ℎܹܽ݃݅݁ݏℎݐ.ஸଽ଴଴௚ ⊑ ,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ 1〉�

indicating�that�every�tablet�which�has�a�weight�less�than�1100g�should�still�be�considered�as�a�
light�tablet�to�a�certain�degree�(here�0.6).�Forܾܽݐ�ଷ�the�exact�weight�is�not�known�but�relating�
information� vary� between� 900g� an� 1100g� with� strong� tendencies� to� the� upper� threshold.�
Therefore,� the� ࣛBox� is� adjusted� accordingly:�
:ଷܾܽݐ〉 ∃ℎܹܽ݃݅݁ݏℎݐ.ஹଽ଴଴௚ , 0.5〉 and 〈ܾܽݐଷ: ∃ℎܹܽ݃݅݁ݏℎݐ.ஸଵଵ଴଴௚ , 0.9〉.� The� ࣮Box� reveals�
:ଷܾܽݐ ∃ℎܹܽ݃݅݁ݏℎݐ.ஹଽ଴଴௚⊓ :ଷܾܽݐ ∃ℎܹܽ݃݅݁ݏℎݐ.ஸଵଵ଴଴௚�
���������� = min൛ܾܽݐଷ: ∃ℎܹܽ݃݅݁ݏℎݐ.ஹଽ଴ , :ଷܾܽݐ ∃ℎܹܽ݃݅݁ݏℎݐ.ஸଵଵ଴଴௚ ൟ = min{0.5, 0.9} = 0.5�
andܾܽݐ�ଷ�is� therefore�a݃݅ܮ�ℎܹ݃݅݁ݐℎݐ݈ܾ݁ܽܶݐ�with�the�minimal�degree�of�max{1 − 0.5,0.6} =
0.6.��

3 Weighted�Fuzzy�Description�logic�

For�the�weighted�fuzzy�description�logic,�the�background�knowledge�base�ࣥ = (࣮, ࣛ)��will�be�
allowed�to�capture�also�vague�knowledge�and�assertions,�which�is�formally�noted�as�ࣥ ≈ (࣮, ࣛ).�
This�knowledge�base�is�then�extended�by�the�set�of�choices�ࣝ�and�the�utility�box�࣯�steering�the�



decision�making.�The�advantage�of�this�framework�is,�that�these�weights�can�be�independently�
articulated�and�do�not�need�to�be�compared�against�each�other�like�in�[25].�
�
Definition�
A�triple�ࣞ ≈ (ࣥ, ࣝ, ࣯),�where�ࣥ�is�a�fuzzy�knowledge�base,�ࣝ�a�set�of�choices�and�࣯�a�utility�
box�is�called�a�fuzzy�decision�base.��
�
Note:�Entities�of�the�࣯Boxes�are�concepts�relevant�to�the�decision-making�process,�including�

their�specific�individual�weights.�After�the�reasoning�for�each�of�the�existing�choices,�the�instance�
check�completes�and�reveals�whether�a�choice�belongs�to�a�specific�concept�or�not.�Assume�a�
choice� ܿ: ܷ�belongs� to�a�concept,� then� this�might�also�be�vague�within� the� fuzzy�description�
logics.�Hence�it�leads�to�constructs�like�〈ܿ: ܷ, ݊〉�with�݊ ∈ [0,1].��
�
Definition�
Let��〈ܿ: ܷ, ݊〉�be�a�fuzzy�assertion�and�(ܷ, ��a�weighted�attribute,�then�a�fuzzy�utility�value�of�c(ݓ
respective�to�U�isݑ�௙∼ఙ(ܿ: ܷ) ≝ ݓ ∙ ݊�

If� the� assertion� is� not� fuzzy,� then� ݊� is� simply� set� to� 1.� If� the� instance� ܿ� belongs� to� the�
complement�of�ܷ�with� a�membership� degree�of� 1,� then� the� fuzzy� utility� value� for� ܿ� on� this�
attribute�is�0�(as�݊�is�then�0).�

�
Example��
In�case�forܾܽݐ�ଷ�the�calculated�respective�reasoned�membership�degree�to�a�light�weight�tablet�is�
0.6,�formally�written�〈ܾܽݐଷ: ,݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ 0.6〉�and�expert� ଵܷ�defines�a�weight�of�40�for�
this� attribute,� formally� written� as� ,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ) 40),� then� � (ଷܾܽݐ)௙∼ఙݑ = 24.� The�
individual�weight�is�a�bit�more�than�half�of�the�initially�defined�one,�as�the�degree�of�membership�
for�this�tablet�is�only�0.6.�As�the�utility�function�is�additive�the�utility�measure�for�a�choice�is�the�
sum�across�all�relevant�attributes.�
�
Definition�
Let�ࣞ ≈ (ࣥ, ࣝ, ࣯)�be�a�fuzzy�decision�base�with�a�utility�box�࣯�of�the�cardinality�݇ = |࣯|�then�
the�࣯Box�fuzzy�utility�value�of�c�isݑ��௙∼࣯,ఙ ≝ ∑ :ࣷ)௙∼ఙݑ ௜ܷ)௞

௜ୀଵ .�
�

By�calculating�the�࣯Box�fuzzy�utility�values�of�each�choice�c,�a�total�ordering�of�the�set�ࣝ�is�
naturally�given.�The� ideal�solution�is� therefore�the�choice�with� the�highest�fuzzy�utility�value�
relative�to�the�࣯Box.�
�
Definition�
Let�ࣞ ≈ (ࣥ, ࣝ, ࣯)�be�a�fuzzy�decision�base�with�a�utility�box�࣯�of�the�cardinality�݇ = |࣯|�then�
the�ideal�fuzzy�choice�is�ࣷ௙∼௦ ≝ arg ݔܽ݉

ࣷఢࣝ
(∑ :ࣷ)௙∼ఙݑ ௜ܷ)௞

௜ୀଵ ).�

�
Example�
For�an�expert�with�the�utility�box� ଵܷ�the�summarized�utility�value�forܾܽݐ�ଷ�is�∑ :ࣷ)௙∼ఙݑ ௜ܷ)௞

௜ୀଵ =
24 + 40 = 64.�The�ranking�of�choices�for� this�expert,�changes�toܾܽݐ�ଵ ≻ ଷܾܽݐ ≻ �ଶ,�whichܾܽݐ
means�thatܽݐ� ଷ�is�preferred�to ܾܽݐଶ.�In�this�scenario,�the�problem�remains�that�the�price�of�the�
tablet�is�neither�expensive�nor�inexpensive,�but�unknown.�Therefore,�it�is�indispensable�to�design�
a�consistent�respective�complete�fuzzy�decision�base�by�ensuring�that�each�attribute�listed�in�the�
࣯Box�is�correct�and�decidable�in�the�knowledge�base.��
� �



Definition�
A�fuzzy�decision�base�ࣞ ≈ (ࣥ, ࣝ, ࣯)�is�called�complete,�if�for�every�relevant�attribute�out�of�the�
࣯�Box�ܷ ∈ ࣯�a�fuzzy�value�for�every�ܿ ∈ ࣝ�is�deducible:�∀ ܷ ∈ ࣯, ∀ܿ ∈ ࣝ ∃݊ ∈ [0,1]: 〈ܿ: ܷ, ݊〉.�
Thus,�the�fundamentals�are�defined�to�make�a�reasonable�decision�in�the�above�scenario.�

4 Results�and�Outlook�

To�complete�the�fuzzy�decision�base�of�the�example�above,ܾܽݐ�ଷ�requires�a�fuzzy�value�for�the�
attribute� ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊��“ ”� andܾܽݐ�ଶ� for� ��Therefore.”ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ“ the�࣮Box� is�
extended�to�reveal�fuzzy�values�also�for�weights�above�1100g�and�prices�in�between�500€�and�
900€.�The�following�expressions�are�added�to�the�࣮Box:�

〈¬∃ℎܹܽ݃݅݁ݏℎݐ.ஸଵଵ଴଴௚ ⊑ ,ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ 0〉�
〈(∃ℎܽ݁ܿ݅ݎܲݏ.வହ଴଴€⊓ ∃ℎܽ݁ܿ݅ݎܲݏ.ழଽ଴଴€ ) ⊑ ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊�� 0.5〉�
〈(∃ℎܽ݁ܿ݅ݎܲݏ.வହ଴଴€⊓ ∃ℎܽ݁ܿ݅ݎܲݏ.ழଽ଴଴€ ) ⊑ ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ�� 0.5〉�

The�first�line�indicates�that� tablets�with�a�weight�above�1100g�do�not�belong�to�the�concept�
�ݐ݈ܾ݁ܽܶݐℎܹ݃݅݁ݐℎ݃݅ܮ at� all.� The� fuzzy� values� of� the� second� and� third� line� represent� the�
membership�degrees�of�those�tablets�which�have�a�price�within�this�interval�and�is�set�manually�
to�0.5�as� arithmetic�mean�between� the� two�categorizations� inexpensive�and�expensive.�Thus,�
�ଷ�is�a�member�of�the�concept�Inexpensive�with�a�degree�of�0.5�and�a�member�of�Expensiveܾܽݐ
with�the�same�degree.��

With� standard�fuzzy� logic� the� fuzzy�value�of�a�concept’s� complement� is:� (¬񯿿)ℐ(݀) = 1 −
񯿿 ℐ(݀),�which�entails�the�following�implicit�knowledge:��

ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ݁݊��〉 ⊓ ∃ℎܽ݁ܿ݅ݎܲݏ.ஹଽ଴଴€ , 0〉�
For�example,�ifܾܽݐ�ଵ�has�the�price�of�999€,�then�the�following�applies:�

:ଵܾܽݐ〉 ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ�� 1〉�and�〈ܾܽݐଵ: ,ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ��¬ 0〉�
By�means�of� this� complete�decision�base� the�above�decision�can�be�derived�properly.�The�

utility�values�forܾܽݐ�ଷ�within�࣯ଵ�and�࣯ଶ�are:�
(ଷܾܽݐ)௙∼ଵ,ఙݑ = 0.5 ∙ 50 + 40 + 0.6 ∙ 40 = 89�
(ଷܾܽݐ)௙∼ଶ,ఙݑ = 0.5 ∙ 60 + 20 + 0.6 ∙ 10 = 56�

For�an�expert�with�the�utility�box� ଵܷܾܽݐ�ଷ�is�his�or�her�first�choice,�while�the�other�expert�still�
choosesܾܽݐ�ଶ.�Through�the�augmented�decision�base�by�fuzzy�logic�a�model�is�defined,�which�
represents�reality�much�better.�Because�there�was�uncertainty�aroundܾܽݐ�ଷ�a�first�calculation�in�
a�conventional�decision�base�revealed�a�distorted�result.�By�incorporating�the�vague�knowledge�
existing�in�this�domain,�the�expert�would�have�chosenܾܽݐ�ଷ�instead�ofܾܽݐ�ଵ.The�strength�of�this�
framework�is�that�vague�assertions�together�with�individual�preferences�are�deliberated�properly.�

Also,�it�becomes�obvious�how�weighting�influences�the�decision.�As�the�first�utility�box�has�
almost� balanced� weights,� the� second� one� has� a� strong� tendency� towards� inexpensive� tablets.�
Using�this�࣯Box�the�first�choice�is�stillܾܽݐ�ଶ.�But�the�second�choice�is�nowܾܽݐ�ଷ�and�notܾܽݐ�ଵ.�
Both�tablets�were�initially�not�belonging�to�the�concept�󿿿݊݁ݐ݈ܾ݁ܽܶ݁ݒ݅ݏ݊݁݌ݔ ,�but�with�the�help�
of�fuzzy�logic,�the�strong�preference�for�inexpensive�tablets�causes�thatܾܽݐ�ଷ�passesܾܽݐ�ଵ.�

Summarized,� complete� fuzzy�decision�bases�offer�a� strong�possibility� to�model� real�world�
situations� which� need� to� respect� ambiguity� and� individual� preferences� and� at� the� same� time�
support�a�comprehensible�decision-making�process.�Further�researches�need�to�reveal�supporting�
algorithms�to�detect�and�locate�incompleteness�to�support�the�creation�of�complete�fuzzy�decision�
bases.�Overall,�the�creation�of�these�underlying�ontologies�is�time-consuming�and�a�non-trivial,�
manual�process.�To�facilitate�this,�new�approaches�with�deep�learning�algorithms�have�risen�[26].�



The�use�of�such�techniques�is�another�milestone�on�the�way�to�a�fully�automated�decision�making�
process.�
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