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Abstract. Following a growth of the elderly population in developed countries, a growth in
research towards contactless measurement systems for this public has been observed. The
development goes often in the direction of intelligent systems to support nursing staffs in
assisted living residences. This can also be foreseen for those living alone at home. In this
work, two contactless sensing systems are presented, one of them already with an optimized
algorithm based on machine learning. Moreover, the optimization of a specific parameter
and of an inclusion of a boundary condition for the algorithm are explained.
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1 Introduction

An increase of low-cost contactless/cuffless monitoring and alarming systems are required to
keep up with the demographic changes in the world. It is estimated that the percentage of the
German population above 60 years old will reach 34.6% in 2030 [1]. These systems are important
to allow the independence and a normal life of especially elderly people living alone, but they
could also be used in retirement homes to alarm nursing or medical assistances.

Different sensor designs have been previously presented to allow vital sign measurements
using ballistocardiography (BCG) practically in any position on a bed [2], couch [3] or standing
[4] anywhere in the house. In general, unsupervised machine learning (ML) algorithmics (also
known as pattern recognition) are used for vital sign monitoring. The reason is that the signals
are normally periodical within a known frequency range. Moreover, body movements due to
respiration and heartbeat, make vital signals even easier to be sensed. In the case of cardiac
measurements, they are realized through BCG. This allows the algorithm to cluster the diverse
peaks generated by the human body according to their similarities (normally known as
dissimilarities) and determine the cardiac periods. Such measurements can be realized with
distinct body positions, in different parts of the house or furniture and diverse sensing principles.
However, adjustments related to the clustering parameters and boundary conditions can be
optimized to increase the recognition rate of the systems.

In this work, two sensors briefly shown as well as a shown introduction of the ML algorithm.
Furthermore, the improvement due to an optimization of parameter and of an inclusion of a
boundary condition in the algorithm is present.

2 Sensors and Machine Learning

Most of the sensors must be designed considering several different points such as the position of
the sensor, sensing object, interface and nature of the signal. To exemplify these in the
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environments mentioned in the introduction, the furniture selection, measurements required, and
interface must be considered in the design to allow proper measurements.

According to the literature, the strongest cardiac component from a human body can be
measured along the foot-head axis [5]. Therefore, a low-cost strain-gauge sensor (for scales up
to 5 kg) was placed at the top end of the mattress (see Fig. 1). This position choice had the goal
of maximizing the cardiac component and reducing the respiration component magnitude in
BCG measurements. This allows a higher cardiac recognition rate by the ML algorithm. A 24-
bit HX711 analog-to-digital converter from AVIA Semiconductor was used. Electrocardiogram
(ECG) measurements using an AD8232 Heart Monitor were synchronized with BCG using an
Arduino Uno.

Mattress 1 Strain-gauge
sensor

Fig. 1. Schematic of the measurement setup using a strain-gauge at the top end of the mattress [2]

For a person seating down, strain-gauges were replaced by piezo disks [3]. This type of setup
has the advantage of reacting only to movement changes, and no offset signal due the person’s
weight is measured. Different signals are generated due to distinct positions. Other than his vital
signs, a determination of the subject’s position could also be indicated by specific patterns for
each position. The dashed circles in Fig 2 were used to mark the different respiratory cycles.
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Fig. 2. Measurement of a subject a) seating on the coach with the sensors placed right below his trunk, b)
seating on the sensor but leaning away from it and c) laying on the coach with the side body over the sensing
area [3]

After measuring BCG, different filters were used to separate cardiac and respiratory components
[2]. The solution adopted consists of a peak detection function and the allocation of the
measurement points in the next 0.66 s in a vector [6]. This corresponds to vector with lengths of
56 for our settings. Then, an arccosine function [7] was chosen to calculate the angle between
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vectors x and y according to their dissimilarity d for a period of 10.66 s. These angles are
compared using equation (1) and its boundaries [2]. For the boundary conditions, & = 3 and i,
=0.33 s were used. After calculating d for all the vectors is this certain window (i.e. 10.66 s),
these vectors are clustered, the largest cluster with the lowest d is chosen as the beginning of the
cardiac cycle.
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where the vectors first elements are represented by x; and y;.

3 Results and Discussion

The results presented in this section are only from measurements realized on a bed with the
strain-gauge setup. An assumption made in our previous work [2], does not consider that the
algorithm can select different BCG waves for the following window. In this case, an error is
introduced during the transition to the next window. For this reason, effective heartbeat
calculations were realized for 10 s, while the detected peaks in the overlapped region of 0.66 s
were not considered for calculation (see circle in Fig. 3). Thus, the next calculation is done
between first and second selected BCG waves of the second 10 s window shown in Fig. 3. This
will be shown in detail in our upcoming study [8].
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Fig. 3. Synchronized ECG and filtered cardiac component from a BCG measurement, squares
indicate the beginning of a new window and the pink stars represent the selected cardiac cycle
start

This modification allowed the inclusion of a further boundary condition. All detected peaks
received an index number (see Fig. 4, left graph) after peak detection. However, d is directly
assumed as 7 if the index difference is smaller than 3. Let us take peak 9 as an example, d is not
calculated for peaks 7, 8, 10 and 11. A further improvement was then possible with this boundary
condition, a parameter which determines the cluster sizes due to dissimilarity was initially set as
1 rad [2]. This value has been suggested as n/4 rad for BCG measurements using piezoelectric
pressure sensors [7]. However, the optimal value for strain gauges placed at the top end of the
bed for a set of almost 10 subjects was determined as 1.2 [8]. The reason for this value might be
related to the sensor system, which requires higher dissimilarities to allow the suppression of
false positive detections. These adjustments have allowed an average improvement of heartbeat
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recognition above 8% for different patients laying on a bed in supine, prone, right and left side
positions (see Table 1). Even though the same algorithm could be directly used with to analyze
the measurements shown in Fig. 2, settings improvements would be required to reach acceptable
recognition rates.
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Fig. 4. Cardiac component extracted from a BCG measurement after peak recognition, used as starting
point for the feature vectors (left side) and dendrogram with clustered vectors (right side)

Table 1. Heartbeat recognition in % using either none [2] or index equals 3 [8] for the clustering process

Subjects Index Supine Prone Left Side Right Side
1 None 96.1 75.0 89.3 90.0
3 98.2 88.6 96.6 98.0
) None 89.2 91.7 78.0 77.3
3 94.3 96.4 91.2 90.0

4  Conclusion and Outlook

The requirement of contactless monitoring systems especially for elderly people is real, and
several measurement principles are already available. Sensor setups still can be improved and
optimized to reach better results and more affordable prices. Moreover, it was shown that the
actual machine learning algorithms must be adjusted for a certain system and are not universal.
Therefore, it is expected that these settings optimizations to improve signal analysis and,
consequently, vital sign monitoring be done automatically by the system using artificial neural
networking in the future.
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