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Abstract. Surface roughness of the ground parts and the grinding forces are two important
factors for the assessment of the grinding process. The surface roughness directly influences
the functional requirements of the workpieces and the grinding forces are an important
criterion for the achievable material removal rate. The establishment of a model for the
reliable prediction of surface roughness and grinding forces is a key issue. This work deals
with design of appropriate control strategy for prediction of grinding forces and surface
roughness as one of the important indicators of the machined surface quality via applying
Attificial Neural Networks (ANNSs) through special sensors integrated into the machine
tool. A micro-grinding process of Ti6Al4V was chosen. The model was verified by various
experimental tests with different grinding and dressing parameters. It was found that the
predictions made by the ANN model matched well with the experimental results.
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1 Introduction

Mechanical micro-cutting is one of the key technologies to enable the realization of high
accuracy complex micro-products made from a variety of engineering materials. Amount
mechanical micro-machining process, micro-grinding has been an effective process to achieve
high dimensionally accurate parts in machining process with superior surface finishes. However,
modelling of the micro-grinding, especially predicting micro-grinding forces and surface
roughness in a very small size is complicated and is still at its early stage. Most of the analytical
models are adapted from conventional approaches but taking one or more size effects into
consideration. The size effects which have been modelled to predict micro-cutting forces include
ratio of feed rate to tool radius; cutter edge radius [1]; minimum chip thickness [2]; and micro-
structure effect.

Research has been carried out in micro-cutting mechanics for decades and experimental
studies still dominate the micro-cutting research. Limited researches, which are dealing with the
fundamental understanding of the material removal mechanisms in the micro-scale (single grain-
workpiece interaction), are available [3—5]. Moreover, the micro-scale numerical modelling
methods are developed to describe the plastic behavior of the workpiece material at the high
temperature and strain-rates linked with the grinding process. Cheng et al. [6] presented a
mathematical model for the prediction of the micro-drill-grinding force. Park and Liang [7]
modelled the micro-grinding forces based on the physical analysis of the process.

In all modeling studies the prediction error for the surface roughens in grinding process is very
high since the grinding process is a complex process. The grinding grits on the surface of the
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grinding tool are stochastically distributed and it is almost impossible to find two same abrasive
grit with the same shape and cutting edges, making the process very complex to be modeled.
There are also several parameters which are influential in the modeling of the grinding forces
and surface roughness such as: vibration, the precision of the machine tool, the tool specification,
dressing parameters and other parameters which is so complicated to import all of them into the
modeling process and consider their effects.

Using the ANNS is a desirable way to model such complex systems. Vrabel et al. [8] used
the ANNSs to predict the surface integrity in the machining process. They developed and tested a
neural network which was able to predict the drill flank wear to prevent anomalies occurring on
machined surface. Beatrice et al. [9] studied the ability of modeling the surface roughness (Ra)
in terms of cutting parameters during hard turning of AISI H13 tool steel with minimal cutting
fluid application. They showed that the ANN model can be a useful tool to select the cutting
parameters for achieving desired surface finish. Tomaz Irgolic et al. [10] used the feed-forward
backpropagation neural network to predict the cutting forces in milling operation. They proved
that the prediction of the cutting forces with the ANNs was very reliable; the error in predicting
cutting forces was smaller than 10%.

In this work several experiments at different conditions with various grinding parameters, i.e.
cutting speed, feed rate and depth of cut and dressing parameters such as dressing overlap ratio
and dressing speed ratio were carried out. Using the experimental data, obtained from the
grinding process, two different neural networks were trained to model and predict the grinding
forces and surface roughens. Finally, the models were validated and tested with some other
experimental data.

2 Methodology

First the desire sensors were integrated into the machine tool for measuring the required out-put
parameters during the experiments. This was an important part of this work since the errors
which occur in the measuring of the outputs will directly influence the prediction of the outputs
via the ANNSs. To this end the titanium alloy “Ti-6V-4Al” was chosen as the workpiece material.
Block samples with the dimensions of 30x20x10 mm were ground using vitrified-bonded
diamond grinding pin (D46C150 V) with the diameter of 2 mm. The grinding pin was dressed
using a diamond dressing roll with the diameter of 100 mm. Oil was utilized as the grinding
fluid. The micro-grinding tests were carried out at different cutting speeds (v.), dressing-speed
ratios (qq), and dressing overlap ratios (Ug) to investigate the effect of these parameters on
grinding forces and surface roughness. A high-precision 5-axis CNC machining center was used
for the experiments (Fig.1).

Table 1. Process Parameters

Grinding Parameters: Values

Cutting Speed v¢ (m/s) 6,10, 12 and 14
Feed Rate v (mm/min) 200 and 1000
Depth of Cut ae (um) 4 and 10

Width of Cut ap (mm) 2.5

Dressing Parameters: Values

Dressing Depth aed (Lm) 2
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Dressing Speed Ratio qa -0.4, +0.4 and +0.8
Dressing Overlap Ratio Uq4 45, 90, 270, 305, 910, 1830

To measure the forces and surface roughness, a type 9256C2 dynamometer and a tactile surface
roughness tester (Hommel-Werke model T-1000) were used, respectively. The surface
roughness measurements were taken perpendicular to the grinding direction at three positions:
at the beginning, at the middle, and at the end of the grinding path. A confocal microscope (psurf
mobile plus) was used to obtain the confocal pictures from the ground surface. Each test was
repeated three times. Table 1 lists the utilized process parameters for the experiments.
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Fig. 1. a) Experimental setup, b) Dressing setup, ¢) Illustration of the micro-grinding process

3 Neural Networks

The appropriate architecture for the ANN was selected through a comprehensive examination of
several network configurations. This was accomplished by changing the number of hidden layers
and number of neurons in the hidden layers. The hidden layer plays an important role in modeling
of the process via the neural networks and has an optimal quantity. The low number of the
neurons in the hidden lower may cause the high Sum Square Errors (SSE) and increasing their
number reduces the SSE up to a certain point that it becomes stable. After that the SSE can be
fluctuated and even increases by increasing the number of the neurons [11].

A routine that utilizes a feed forward back propagation algorithm was used to develop the model
as it is widely used by other researchers, since this method generally leads to the most accurate
results. The feed forward back propagation is considered to be a powerful technique for
constructing non-linear functions between several inputs (such as cutting speed, feed, depth of
cut) and one or more corresponding outputs (such as the cutting forces). The back-propagation
network typically has an input layer, an output layer and at least one hidden layer, with each
layer fully connected to the succeeding layer. During learning, information is also propagated
back through the network and used to update the connection weights. The following expressions

give the basic relationships used for this analysis [12]:

[s] _

q = current output state of the q™ neuron in layers.

X
WE,]Z weight on the connection joining the p™ neuron in layer s-1 to the g neuron in layer s.

IC[IS]Z weighted summation of inputs to the q" neuron in layer s.

A back-propagation element therefore propagates its inputs as:
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The MATLAB ANN toolbox was used for easily updating the value of weights and biases of the
algorithm. Networks with different architecture were trained for a fixed number of cycles and
were tested using a set of input and output parameters. The sigmoid function is used in this study.
Fig. 2 shows a neural network structure for learning process with a sigmoid function for the
hidden layer and a linear transfer function for the output layer.

Hidden Layer

Input f

Fig. 2. The schematic of a neural network for learning

4 Results and discussion

In the modelling 80 percent of the gathered data has been chosen for training, 10 percent for
validation and 10 percent for testing of the network. Different hidden layers with different
number of neurons was chosen to obtain the optimal hidden layer.
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Fig. 3. left) The regression for the trained and test data for Ra, right) the Error Histogram for Ra

For modeling of the surface roughness the number of the hidden layers has been set equal to the
number of the inputs and the results have been given in Fig. 3-left. As it can be seen in the figure,
all the phases (training, testing, and validation) have an acceptable error which shows that the
developed ANN model can precisely predict the surface roughness in the term of R,. The training
phase has an SSE of 0.82 which shows that all data are trained sufficiently. After the training the
trained model has been validated with the 10 percent of the gathered data. The validation has
also an acceptable error (SSE 0f 0.89). The model was tested furthermore with another 10 percent
of the gathered data which showed a very good ability of predicting of the surface roughness via
ANNSs (SSE 0f0.97).
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Fig. 3-right represents the Error Histogram which is calculated as the difference between the
targets of the neural networks and the actual outputs. The graph also shows that most of the errors
in all stages are around the middle of the histogram curves which also validate the training stage.
Fig. 4 shows the trend of the learning process. At the beginning of the learning process the error
is high and the model correct himself by modifying the weights until a stable steady situation
has been achieved. It is also clear that the all stages including training, validation and testing are
approximately in the same order.

Best Validation Performance is 0.014815 at epoch 3

Mean Squared Error (mse)
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Fig. 4. the modeling trend versus the learning Sycle for Ra

To model the grinding forces first the number of neurons in the hidden layer has been set to 10
and the errors have been listed in the Fig. 5-left. The results show that the ANN also can precisely
predict the grinding forces with an acceptable error. The histogram graph also shows that most
of the errors in all stages are around the middle of the histogram curves which validate the
training stage (Fig. 5-right).
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Fig. 5. left) The regression for the trained and test data for the grinding forces with 10 neurons in hidden

layer, right) the Error Histogram for the grinding forces
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Conclusion

A neural network with different structures was designed and trained to predict the grinding forces
and surface roughness of micro grinding of titanium. The cutting forces and surface quality was
measured via integrated sensors into the machine tool. It was observed that the accuracy of the
training phase as well as testing highly depends on an optimized number of the neurons in the
hidden layer. The results showed that the ANNs are capable to model the grinding forces and
surface roughness of titanium material with an acceptable accuracy. The results of this study can
be used to monitor the process online. As a future work it is suggested to use acoustic emission

as an additional sensor to online monitor the process, enabling the prediction of the surface
roughness with the help of ANNS.
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