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Abstract. Recently we have shown developments on capacitive tactile proximity
sensors (CTPS) in combination with machine learning techniques to extract fur-
ther information out of the sensor signals. In this work we summarize two examples
of the applications we have presented. In the first approach we have investigated
distance classification based on the proximity information of the sensors. In the
second approach the possibility of material recognition was investigated. The lat-
ter is done by variating the spatial resolution and the exciter frequency of our
sensors. For both approaches, distance classification and material recognition, an
artificial neural network was set up and fed with various data sets of different
electrode combination. The influence of the electrode combinations and shapes on
the recognition accuracy was investigated and some promising results could be
achieved.

1 Introduction

An established sensor technology, at least in research, are sensor skins for robots. These
can detect touch and provide information about location and force of this touch. These
skins are used for a variety of applications ranging from human-robot-interaction (HRI)
and grasping concepts. More recently the ability to detect objects/events in the near
proximity of the robot are under investigation as they provide the interesting possibility
to get information right before the touch event even happens. This extends even further
the possibilities in HRI, grasping and could significantly contribute to safety concepts.
Proximity sensing closes in a unique way the perception gap between classical vision
based sensing and touch sensing.

For the implementation of this proximity sensor modality different measurement prin-
ciples have been proposed based on different physical effects, mainly acoustic, optical and
capacitive; examples are [1-3].

Our line of work has been dedicated to designing hardware and applications for ca-
pacitive tactile and proximity sensing. Capacitive sensing is affected by the electrical
properties of the object (conductivity, permittivity when non-conducting), its size and
shape and of course its distance to the sensor. Unfortunately this implies complicated
dependencies in the sensor signals, which are not easy modeled.

The research presented here is a continuation of our previous work [4], where we
introduced a flexible, easy to integrate capacitive tactile proximity sensor for applications
in robotics (s. Fig. 1).

* This research was funded by the German Research Foundation (DFG) under the grants HE
7000/1-1 and WO 720/43-1.
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Fig. 1. Sensor module and electrodes of the sensor presented in [4]. Up-to eight electrodes can
be combined individually.

In this work we especially summarize two aspects of our previous research, which did
focus on using machine learning techniques for extending distance measurement [5] and
material recognition [6].

The rest of the paper is structured as follows: After this introduction the state of
the art is presented in Section 2. In Section 3 we present our sensing system used to
collect the data about the different objects. In Section 4.1 we discuss the experiments in
material recognition and their results. Finally, in Section 5, we provide a summary and
give conclusions for this paper.

2 Related Work

A very interesting application scenario for proximity sensing is preshaping of a robot
end-effector, i.e. aligning the gripper of a robot to an object prior to finally grasping it.
Preshaping applications for robotic gripper have been shown based on proximity sensing
with capacitive sensors in [7-9]. Another important application for proximity sensing is
collision avoidance. Early works are [10] and the milestone work by Lumelsky and Cheun
[11]. As mentioned above, capacitive sensing is susceptible to shape, material and size of
the objects it perceives and suffers from strong non-linearity. Therefore machine learning
seems to be a valid way to address these issues.

Like it was stated in the introduction, the second aspect to be presented in this work
is material classification. Capacitive proximity measurements have the potential to be
applicable also for this kind of scenario. Materials can basically categorized and distin-
guished by their relative permittivity €,.. In general this can be done by gathering sample
data and then applying classical classification methods. Kirchner et al. proposed data gen-
erated by using three discrete frequencies [12] to classify four classes of objects (concrete,
human, metal and wood). The use of different frequencies is decisive for their results. By
driving the sensor towards the object, a distance dependent curve was recorded which
was then used for the material ranging. In our work we also use different frequencies,
but we propose an approach which only depends on the sensor values. In other words, a
single frame of sensor measurements is used to predict the material.

Another interesting approach for an impedance analyzer using magnetic and electric
component is shown by Yunus et al. and Wang et al. [13] and [14] respectively. Both works
target the same application domain regarding water pollution detection. Wang et al.
specifically investigated different electrode designs in [14]. Due to the fact that significant
changes in the signal have been observed in permittivity at frequencies below 500 kHz
and that the shape and the order of the electrodes are major for the measurement, we see
the analogy to our sensor in the multi-frequency measurement and the dynamic electrode
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Fig. 2. The assembly of a sensing element (T'E; - Top Electrode ¢, BE bottom electrode. An
analog switch allows selection and combination of electrodes [4].

configuration. However, our approach is less complex using two discrete frequencies and
the electrode reshaping was realized by the flexible spatial resolution of the sensor.

A simple capacitive proximity sensor with one exciter frequency and fixed electrodes
would not provide enough information about detected objects. Therefore, A.Kimoto in
[15] combined optical sensor with capacitive one. He was able to distinguish between
Acrylic, PTFE, Class and Aluminum in different surface properties. In the context of
robotics and especially in grasping applications collecting information about the object
is essential. In such scenarios a gripper or manipulator equipped with suitable capacitive
sensors can provide internal properties of the object’s material. Respectively, the control
system can then decide which object should be grasped [16]. In this case the capacitive
sensor provides information which is complementary to those of vision or haptics.

3 System Description

The sensor design, which was presented in detail in [4] (s. Fig. 1), can be used in a very
flexible manner, in this section we therefore start with presenting the general concept
of our sensor design and then explain the hardware implementation needed for the two
approaches: distances measuring and material classification.

3.1 Sensor Design

One specialty of our sensor is its ability to reconfigure its spatial resolution on-line by
merging the electrodes using an analog switch (s. Fig. 2). This increases the measurement
area of the resulting electrode and thus the sensitivity of the measurement. Additionally
the sensor is able to use different frequencies for the measurement and multiple sensors
can by used in a synchronized fashion. Fig. 5 shows in the material classification task
three of our sensor modules as part of an end-effector that is approaching a wooden ball.

The sensor can be used in self-capacitive (send) and mutual-capacitive (receive) mode.
Both modes are alternatively called single-ended and double-ended in literature. In the
self-capacitive mode the top electrodes (T'E;) are driven with an AC signal passing
through the analog switch, which can select or join electrodes arbitrarily. The signal
causes the periodic charging and discharging of the electrodes. The capacitive coupling
of the configuration with the environment can be measured by finding the amplitude
of the current flowing through the circuit. To guide the coupling towards the ”outside”
side of the sensor, the bottom electrode BE is used to actively shield the T'E; from any



62

Fig. 3. First sensor setup for investigating distance measurement based on machine learning.
Left: 4x4-sensor configuration using 2 sensor modules controlling 2x4 electrodes at a time; Right:
Schunk-LWA with 4z4-sensor configuration attached as end-effector.

components below. An object will affect the coupling according to its material proper-
ties and its proximity to the sensor. In the mutual-capacitive receive mode the T'E; are
connected to ground through a measurement circuit. In the presence of a sender there
will be an electric field lines showing from the sender towards the receiver, inducing a
current at the receiver side. An object near the electrodes will affect the field. This effect
is reflected in the current being measured and again depends on the object properties.
This double-ended measurement is suited for detecting insulated objects with a high
enough relative permittivity. With our sensor a tactile measurement is also possible due
to the compressible, insulating layer between T'E; and BE, but it is not used in this work.
Finally, the frequency of the exciting signal can be adjusted, which is also an important
aspect, i.e. for material recognition, since the permittivity can be a frequency dependent
value.

For both setups the end-effectors with the sensors were mounted on small 6-Axes-
Robots. Distance measurement tests were done with a SCHUNK-LWA (s. Fig 3, right),
material classification tests where done using an UR5 (s. Fig. 5, top right) and the Robot
Operating System (ROS) was used as a middleware. For generating and executing the
trajectories Movelt and ROS Control were used.

3.2 Sensor configuration

Sensor setup for evaluating distance measurements via machine learning
For the machine learning approach measuring distances 2 sensor modules with 2x8 elec-
trodes were used as sensing elements (s. Fig. 3). In this setup the end-effector consists
of 16 electrodes and the spatial resolution is used to take measurements with different
electrode and sizes, i.e. signals from one single electrode or signals from 4 combined elec-
trodes were recorded. So, a total of 22 different signals were collected. The basic idea
behind this approach is that with a higher resolution (single electrodes) we get shorter
measurement range and a higher uncertainty about the capacitances and therefore dis-
tances, but the object’s size and localization is clearer. Conversely, with lower resolution
(combined electrodes) we get a higher measurement range due to a better representation
of the capacitance and therefore distances at the cost of loosing accuracy in the local-
ization of the object. A frame combining both potentially unifies the advantages of both
worlds.

The used end-effector for material detection is basically quite similar to the one for
distance measurements and can be seen in Fig. 5. Two 4 x 2 modules combined make
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Fig. 4. Sensor configuration used for testing distance measuring [5]. Due to the flexibility in the
combination of electrodes (s. Fig. 2) the signal of single electrodes (E00 — E16) and combined
electrodes (¢E00 — gE05, 4 combined electrodes) are fed to the neuronal network.

up the receiver array of the end-effector as already shown in the distance measurement
set-up (s. Fig. 3). In addition a third module was added and acts this time as dedicated
sender. Six of its electrodes are installed at both sides of the receiver array, but only
the ones closest to the receivers have been activated (represented by blue stripes). The
flexible spatial resolution is used to take measurements with different electrode sizes and
shapes, as seen Fig. 5(C1,, C2,,, C3)). At each resolution the set of measurements can
be thought of as a capacitive image. The collection of all measurements then is a multi-
resolution capacitive image, which we call a frame. The hardware sequentially generates a
frame within some fraction of a second by time-multiplexing through each configuration
of electrodes.

Sensor setup for evaluating material detection via machine learning

By reshaping the electrodes we assume to get different configuration of the potential
field and thus the penetration or polarization of the dielectric objects. in addition two
exciter frequencies were used to obtain information about the object material due to the
fact that the relative permittivity shows a frequency dependency. Figure 5 shows the
configurations used for the measurements, where three basic electrode combinations are
highlighted.

4 Evaluation and Results

4.1 Experimental Setup: Distance measurements

Basic idea of this experiment was to classify distances according to 1cm steps. To generate
the training data the end-effector (s. Fig. 3) was moved over the object in the pattern
shown in Fig. 6.

In this section we discuss the experimental setup, the framework and setup for learning
with artificial neural networks (ANNs) and the results obtained using different combina-
tions of electrode configurations and signal frequencies. The latter - changing frequencies
- was only used for the material classification test.

Artificial Neural Network

The distance classification neural network has been implemented using the Tensorflow
framework. The recorded data was trained using a feed-forward network with 3 hidden
layers. Each hidden layer consists of a set of fully connected neurons. All hidden neurons
used the rectified linear unit (ReLu) activation function [17], the network was trained
using backpropagation [18] method and the Adam optimizer [19].
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Fig. 5. Second sensor setup for classification of materials using machine learning. Top Left:
The end-effector featuring three sensor modules: two 4 x 2 modules in the middle configured in
receive mode and one module driving up to six electrodes in send mode. The PCB with the
analog and digital electronics for the third module is visible in the front. The three modules
are connected to the same I12C bus; Top Right: Setup with an Universal Robot with the sensors
mounted on an end-effector. Similar to set-up shown in Fig. 3, the robot is used to perceive
objects in its workspace. In this set-up it is used to classify them according to their permittivity
or conductivity; Bottom: Illustration how the flexible spatial resolution is used to select single
electrodes C'1,, with n € {1,...,16}, configurations of two electrodes combined C2,, with m €
{1,...,16} and configurations of four electrodes combined C3; with k € {1,...,6}.

The data, that was collected during the movement (s. Fig. 6) was shuffled and split
into training and testing sets, the cross validation technique [20, 21] was performed with
5 folds (k=5), meaning one of the k subsets is used as the test set and the other k-1
subsets were combined to form a training set. The training algorithm had to run from
scratch k different times. In the end, the average root mean squared errors was computed
across all k folds.

Results

Multiple configuration were tested and per configuration 18246 data samples were gen-
erated. In [5] this is discussed more in detail. To give an idea two configuration are
exemplary discussed and presented here. In a first notion the sensor signal of 3 differ-
ent electrodes were used as feature input. This is based on the idea that triangulation
requires at least 3 measurements to identify a location. The score that could be reached
by this idea was 51.49%. Figure 7 on the left clearly shows, that distances close to the
sensor can be distinguished quite good, but far distances led to misclassifications.

In summary we ended up using all available sensor measurements, i.e. all single sensor
electrodes and all the combined ones (F00 — E15 and ¢E00 — ¢E05, s. Fig. 4) as input
features. We got therefore a feed-forward backpropagation network with 22 inputs, 14
outputs for corresponding distances and 3 hidden layers with 80-40-20 neurons respec-
tively. It yields after using cross-validation and tuning manually the hyper-parameters
the highest classification score of all configurations with a value of 94.87%.
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Fig. 6. Recording of the training data: The end-effector is moved over the object. At equidistant
positions the end-effector moves downwards in direction of the object (s. Fig. 3). Based on the
ability of the sensor to change the spatial resolution by combining electrodes, the sensor-data of
single electrodes and of combined electrodes (s. Fig. 4) are recorded while moving.

Fig. 7. Left: Using sensor information of three electrodes / electrode combinations as input al-
lows a good classification for small distances but fails for far distances; Right: using all electrodes
and all combinations (total of 22 sensor streams) lead to good classification results even for far
distances.

Being this the first time for us to apply an ANN to our sensor data, the results were
quite promising. Especially as the range for distance measurement was nearly doubled.
Overall - for the given setup - the distances could be much more precisely measured and
identified using ANNs than by using the original model-based approach.

4.2 Experimental Setup: Material classification

Encouraged by the previous results using ANNs for distance classification, a second way
of exploiting ANNs and their classification abilities was investigated. Basic idea of this
experiment was to classify materials based on their relative permittivity. The relative
permittivity €,(w) is depending on the frequency of an exciting electrical field they are
in. As our sensors create such an electric field and are capable to use different exciter
frequencies it was obvious step to try to exploit this capability.

Objects consisting of different materials (s. Table 1) were used to test the concept.?.
All experiments were done in the laboratory by constant ambient temperature and hu-
midity.

The distance between the electrode array and the top of the objects was kept to 2 mm
during the measurements. Similar to the distance calculation in the previous Section

3 The table is an excerpt of the values found in
http://www .kayelaby.npl.co.uk/general _physics/2_6/2_6_5.html
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Fig. 8. Balls with diameter of 5¢m; Test objects of different Materials, one ball each

Material Relative Permittivity e,
Styrofoam[22] 1.03

Glass (quartz) 3.8

Salt (NaCl) 6.1/5.9

Marble 8.0

Wood (Beech 16% water) 9.4/8.5

Tap water 80.1

Table 1. relative permittivity of the used test materials

the end-effector was moved in a meander path over the objects enclosing the borders
of the receiver array (s. Fig. 9). This path was iterated ten times while the data was
collected. In the training phase 74033 samples of all material were split in proportion 8/2
for training/validation. Additional 18512 samples were recorded for test. Every sample
is a frame that contains the sensor values for the various electrode combinations and
frequencies. Its size could variate depending on the selected combinations.

] 5 Varement of
,J“ ¢ the TCP
-

hapect

Hendfes Jud Reverver Sender

Fig. 9. Initial position of the end-effector and its path

Artificial Neural Network

The material recognition neural network was also implemented in Tensorflow. The recorded
data was trained using a feed-forward neural network (ANN). For the ANN, the number
of the input neurons was defined as the size of the data frames, hence by the selected
electrode combinations and frequencies for each data set. The input was then forwarded
through a series of ReLU-layers, where a dropout rate of 10% had been set. Lastly, the
data was fed to a softmazr output layer, whose size equaled the amount of materials
trained for. In addition to introducing dropout to all hidden layers, the weights were also
modified through L2 regularization to further decrease overfitting. Updates to weights
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were done in mini-batches of 300 and optimized by the Adam optimizer [19]. To further
prevent overfitting, every five epochs, the validation set’s accuracy was calculated and
training was prematurely ended when this accuracy exceeded a threshold of 0.98. Fur-
thermore, a patience period of ten epochs to stop training was set, which counted up if
the validation loss did not decrease compared to the last best loss. The best results were
achieved by setting the hidden layer size to two layers with 400 units each. The initial
learning rate was set to 0.001. The Hyperparameters are listed in Table 2. Those were
determined in a previous experimental run and showed best results for all data sets. The
hyper-parameter do not variate between the data sets.

Hidden layers 400, 400

Batch size 300
Learning rate 0,001
L2 beta 0,1
Dropout 0,1

Table 2. Hyperparameters of the ANN

Results

The measurement was performed for all seven objects®. For each object about 13100 data
frames were collected. Due to the air-like relative permittivity of ”styrofoam” this object
acted as air.

Set 3

Variation C2,,
89kHz,178 kHz

Input 32

Epochs trained 25

Test accuracy 94.2%

me sa ma wo gl wa Sf ]
2666 20 0 O 8 2 0
2 1835 822 O 1 0 O
0 2232436 0 0 0 O
0 0 0 2632 0 0 0
0 0 O 0 2640 0O O
0O 0 O 0 0 2607 O
0 0 0 0 3 0 2627
Accuracy 94.2%
Precision [99.3 69.0 91.6 100 100 100 100]
Recall  [99.9 88.3 74.8 100 100 100 100]

The network was fed with different combinations of the measurement regarding the
electrode combinations and the exciter frequencies. In [6] the different combinations are
discussed in detail. It turned out that the C'2;, combination showed the best results. We
believe that the C'1,, and C3; do not provide enough information. While C'1,, has the
highest spatial resolution, its electrodes are relatively small and less sensitive, with a
lower Signal-to-Noise ratio (SNR). On the other hand, C3) has the highest sensitivity,

4 me: metal, sa: salt, ma: marble, wo: wood, gl: glass, wa: water, sf: Styrofoam
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but also the lowest spatial resolution. The €2, configuration is placed in between C'1,,
and C3j and therefore seems to combine for the given setup the needed spatial resolution
and increased sensitivity in an optimal way.

5 Conclusion

In this work we have summarized and compared our previous work about two examples
of beneficially using ANNs in combination with our tactile proximity sensors. Specially
we did focus on the proximity sensing ability of these sensors.

In the first approach [5] we could show, that distance classification can be done using
an ANN in a very straightforward way. For the given setup this approach yields better
results regarding the measurable distances. With the original model-based approach we
could detect and identify distances up to somehow 8cm. The ANN approach described
here, nearly doubled the range and allowed us to extended the feasible measuring range
up to 1l4cm.

The second approach [6] is targeting material recognition. It makes use of the abilities
of our sensors to measure with multiple frequencies and to flexible combine electrodes
allowing to configure the spacial resolution of the sensors. Correspondingly to the dis-
tance approach an artificial neural network for the classification was used. The essence
of the work was to perform the measurement with various combination of the sensor
features which can provide sufficient information to recognize material without further
information. For the evaluation, data has been collected by measuring seven object of
different materials with variation of electrode combinations and two driving frequencies.
The best recognition result with an accuracy of 94% was reached through the C2,, elec-
trode combination and both frequencies. The experiment shows that the combination of
various electrode shapes and driving frequencies is promising for material recognition.

Since all experiments were done in the laboratory by constant ambient temperature
and humidity. Further investigation in operating conditions should also be done.
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