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Abstract. Manufacturing processes act on workpieces by exerting a sequence
of varying control actions. This results in a sequence of inner and outer work-
piece states. The goal is to reach a final state, which has dedicated geometrical
and physical properties. Variations of the input and stochastic influences must
therefore be compensated during processing, while the ressource-efficiency should
be maximized. For this purpose, self-optimizing Artificial Intelligence (AI) con-
trol methods were developed. The corresponding Markov Decision Problem is
solved via Machine Learning methods. The cost trade-off between pre-production
data sampling to learn the required models and initial low-quality production
with learning from production-experience is addressed by two corresponding ap-
proaches. 1) Deep Neural auto-encoders and state trackers deliver the input of
an optimizing process control, which is constructed from Approximate Dynamic
Programming with integrated Neural Networks, representing the learned process
dynamics. 2) An explorative Al approach with re-inforcement learning, which
automatically learns an implicite model for the control policy, based on the ex-
perience with each processing result. This approach can also adapt to process
drifts (e.g. from tool wear). Other than classical control methods such as Model
Predictive Control, the new approaches can compensate input quality variations,
stochastic state perturbations and slowly varying conditions.

Keywords: intelligent control, approximative dynamic programming, reinforce-
ment learning

1 Introduction

The series production of parts is a repetition of processes, transforming each part from
an initial state to some desired end state. Each process is executed by a finite, discrete
or continuous sequence (path) of -in general irreversible- processing steps. Examples are
plastic deformations in forming processes or material removal in milling. The optimal
control of such processes is different from classical control theory problems and self-
learning technologies have to come into place to adaptively solve the optimization problem
under varying conditions. The process path optimization is formulated as a Markov
Decision Problem (MDP) with finite horizon. The optimization strategy (policy) can be
refined between subsequent processes, which are called episodes in the field of Machine
Learning. This allows the adaptation of the strategy to changing process conditions, e.g.
to varying state transition functions.

The episodic fixed-horizon manufacturing processes considered here are nonlinear
stochastic processes. Every episode in the process consists of T irreversible control steps
at discrete times. Deep drawing is used as sample process throughout this paper and is
depicted in fig. 1. Based on the measured quality of the process episode result, costs are
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assigned and transfered to the control agent by a reward signal Ry at the end of each
execution. The control effort (energy consumption, material use, processing time, etc.) is
reflected by intermediate costs and also being subject to optimization. The goal is to find
a control policy, that minimizes the total cost and thereby optimizes the process perfor-
mance regarding the resulting product quality and the process effciency. The multistage
optimization problem of our interest is described by a MDP and is solved by Dynamic
Programming (DP) or Approximate Dynamic Programming (ADP) or by Reinforcement
Learning. The DP/ADP/RL approaches in this paper involve the following concepts:

— The value or cost or reward function J;(x;) that defines the optimal value of the
optimization objective (defined over the remaining time horizon) for the state x; at
time ¢

— In a Markov Decision Process, a transition from a precedessor state x; to a successor
state x;11 taking the decision or action wu; is subject to uncertainty and can be
expressed by the conditional probability P(x¢y1|X¢,us).

— The control policy m; that maps the current state x; to the optimal action wuy,
¢ (Xt)

opt

The optimization tries to select a control action, which leads to minimum expected
cost in the ongoing process. It therefore requires a prediction model, which is built via
machine learning and applied via Al inference. The individual model components (costs,
state transition, Q-function and policy) are represented by continuous ANNs or by dis-
crete value tables in combination with a k-Nearest Neighbor (k-NN) predictor. The map-
ping between the actual state x; and the (optimal) action wy,, is referred to as the
(optimal) policy (i.e., control law). The decision is made based on the stagewise costs
Cy(x¢,u;) which depend on the selected state transition. To optimize the entire process
consisting of multiple time stages, the total costs <Z?=1 7:Ct(x¢, ur)) need to be consid-
ered, where 7, is a discount factor over time (0 < ¢ < 1). The result of the optimization
defines the optimal decision for each considered state at every point in time. According
to Bellman’s Principle of Optimality [4], the multistage optimization problem can be
reformulated in terms of the Bellman Equation [5]:

Ji(xi) = ultTleigt{Ct(Xt, up) + e Jep1(Xeg1)) (1)

with (Jep1(%e41)) = Ds, 1 ex, ) P&Xeralxe, ue) Jepa (xiq).

J¢ describes the costs that are associated with the current state x;, and J;y; stands
for the costs that are associated with the remaining time steps and depends on the
successor state xy41 of the current decision. Since the state transition is subject to un-
certainty, the expectation of J;y1 is taken with respect to all possible successor states
Xt41 and their conditional probabilities P(x;y1|X¢, us). Two approaches are possible:
The first learns explicit initial models of the process state dynamics and of the process
state measurement in advance, based on experimental data from laboratory or simula-
tion. The second starts building an optimization model from scratch during processing,
learning directly from process data in a trial-and-error fashion. In the first case, much
experimental and modelling effort is required, before production can start. In the second
case, the initial production will be sub-optimal until the models are sufficiently learned.
Nevertheless both Al approaches result in highly optimized production strategies, which
can both compensate stochastic influences, while the second can also automatically adapt
to changing input quality, to tool wear and other influences, thus maintaining continuous
high product quality.
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Fig. 1. Deep drawing optimal control as episodic fixed-horizon process. For every control step
t, the optimal control task is to determine the control-action u; that maximizes the expected
episode reward Rr, based on the observations [0p, ..., 0¢] in the current episode and on data from
previous episodes. (source: [1])

We use the optimal control of a deep drawing process with forced punch speed as
application example and evaluation case. In cup deep drawing, a metal sheet is clamped
between a blank holder and a die. A punch presses the sheet into the die such that we
obtain a cup-shaped workpiece. If the blank holder force is chosen too high, material
cracking will occur, while a too small blank holder force will lead to wrinkles in the sheet
edge. This necessitates the control of the blank holder force during the execution of the
deep drawing process for a finite time horizon. Besides given input properties, like the
initial blank shape and thickness variation, the time-variation of the blank holder forces
is crucial for the resulting process quality. The control goal is to set the blank holder force
at each processing step, depending on the current, partially observable process state in
a way, which yields the optimal process result. The influence of space and time variation
schemes of blank holder forces on the process results is examined e.g. in [2], [3] and [4].
The state of a workpiece during processing is described by the stress distribution within
the material, but which is not directly observable during processing. Only the reaction
force in the punch and the intake of the material between die and blankholder can be
measured. This makes the optimization a so-called partially observable Markov decision
problem (POMDP).

2 Optimal control for continuous state spaces by incremental
learning

The first approach presented in [5] uses model-based optimal control methods where a
process model, an state-observation model and a cost function are available from previous
work [6]. Optimal control is then acheived by dynamic programming [7]. Such approaches
are subject to the so-called curse of dimensionality in high-dimensional state spaces,
leading to diffculties from huge sample sizes required for modelling and from the resulting
computational complexity. In the case of continuous (and thus infinite-dimensional) state
spaces, the optimal control solution by dynamic programming requires discretization of
the state space, leading to suboptimal solutions. These problems are addressed in the field
of approximate dynamic programming, combining dynamic programming with function
approximation [8]. In applying ADP to the problem, Artificial Neural Networks (ANNs)
are created as global parametric function approximators to represent the value functions
as well as the state transitions. For each time step of the finite time horizon, time-indexed
function approximations are built. We use a backward ADP approach with batch learning
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of the ANNs. Here, the ANNs are trained from temporary value tables constructed by
exhaustive search backwards in time. The obtained value function approximations are
obtained with good performance, where the models for the state transition and the value
function are determined with batch learning ANNs from simulation data. The control
policy is given by the solution of the stochastic Bellman Equation with approximated
successor costs J;41 with respect to the pre-decision state %;11) (Eq. 2).

ot (x¢) = min {Ce(x¢,ue) + (Jo41(Fes1))} (2)

ut U

Ji

The optimization is performed backwards in time as depicted in Fig. 2.

fort= [X¢41X¢ Ug Xt Ut
T-1.1

2)
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Jt opt Jt
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Fig. 2. Scheme of backward ADP (source: [5])

We start by determining the final costs Jp = Cp = Cp for each final state xp
and create the approximation Jp in terms of a batch learning ANN. This serves as the
successor costs jt+1 in the first loop run for ¢ = T'—1. For each loop run, we determine the
local costs C; and create a batch learning ANN to predict the state transition from actual
states x; with decisions u; to the corresponding successor states X;+1. In a next step, the
Bellman Equation (with approximated successor costs jt+1 is solved with respect to the
pre-decision state

Jropt (x¢) = max {Cy(x¢, ur) + (J1(Re41))} (3)

ut €Uy

for each state x; and the optimal solution J; ,; is stored in a temporary value table.
The approximated successor costs Jt+1 are either given as an ANN from the previous
loop run or by the approximated final costs Jr at the beginning. The expectation (Jt+1)
is calculated as a numerical integral. The content of the temporary value table then
serves for training a batch learning ANN ft based on the states x;. This approximation
corresponds to the successor costs in the following loop run. The Backward ADP gives
an optimal value-function from which the optimal control strategy can be derived, but
which is not adaptive to process drifts.

3 Reinforcement Learning Approach

The processes considered here are not fully observable. The sole sensor observations
at a time are not suffcient for deriving optimal control decisions. Instead of learning
measurement models (mappings of sensor data history on states) as in the previous
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approach, the accumulated sensor data and control history is taken into account to avoid
any pre-production modelling.

The model-free adaptive approach, proposed in [1], requires no prior information,
(like reference trajectories, a process model or an observation model), since the optimal
control strategy is learned during execution. The approach can thereby be used, if no
accurate process model is available or the use of the given process model for optimization
is impractical.

In this approach, following the standard notation of reinforcement learning, the sys-
tem and the optimization problem are modeled as an MDP, as introduced in the previous
chapter. In MDPs, instead of the cost-function J, a reward function R is used, leading
to a maximization problem instead of the minimization in eq. 3. The Bellman equation
is then given by the value function

V*(x) = maxEp | Ry(x, Xe1) + 7V (xe41) . (4)

where the probability of x; 1 is given by the transition probability function P, (x,x;1),
capturing stochastic process conditions. The optimization is achieved by selecting the ac-
tion, which leads to the state that maximizes the value function V*. This would require
knowledge of the state transition probability function. Instead, we use the optimal Q-
function, assigning an expected reward value to each state-action tuple

Q*(x,u) =Ep|Ry(x,X¢41) + 7 max Q" (X¢+1, ut+1)] . (5)
Ut41

For discrete action-spaces, the optimal policy can then be determined from the Q-function

simply by

™" (x) = arg max Q" (x, ). (6)
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Fig. 3. Scheme of the interaction of the optimal online control agent with the process environ-
ment. (source: [1])

By taking the actions into account, the @Q-function implicitly captures the system
dynamics, and no additional system model is needed for optimal control. A generic version
of the -learning control agent is depicted in fig. 3.

In Q-learning-based algorithms, Q* is found by constantly updating a Q-approximation
by the update step in eq. 7, using experience tuples (x,u,X:+1, R) and a given learning
rate a € [0, 1], while interacting with the process in an explorative manner.

Q' (x,u) = (1 - a)Q(x,u) + a(R+~ max Q(Xt41,Ut41)) (7)

Ut+1€
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An observer derives surrogate state descriptions X from the observable values o, and
previous control actions u. Control actions are determined based on a policy 7, which
itself is derived from a @Q-function. In the approach, proposed in [1], the Q-function is
learned from the processing samples via batch-wise retraining of the respective function
approximation, following the incremental variant of the neural fitted Q iteration approach
([9]). For exploration, an e-greedy policy is used, acting randomly in an e-fraction of
control actions. To derive the optimal action, the current approximation of the ()-function
is used (exploitation). The exploration factor € € [0, 1] is decreased over time to improve
the optimization convergence and to reduce the number of sub-optimal control trials.
We use an exponential decay over the episodes i according to €; = e~ , with decay
rate A. Since x is only partially observable, we use the full information about observables
and actions for the current episode by concatenating all these values into a surrogate
state description X. Thus, the dimension of X € R™ is time-dependent according to n; =
[dim(O) + dim(U)] * t. When using Q-function approximation, the approximation model
input dimension is therefore also dependent on t. If function approximation methods with
fixed input dimensions (like standard artificial neural networks) are used, a dedicated
model for each control step is required. The extension of the model-free approach for
applications with multiple weighted and eventually contrary objectives is described in
[10].

4 Results and Conclusion

Both approaches, proposed in [5] and [1], are applied to the standard industrial process
of cup deep drawing (soda cans, machine covers, pots, etc.) with volumes of millions of
batches per day. The process goal is to produce a cup with low internal stress and low
material usage, but with sufficient material thickness. The three optimization criteria
are combined into a single Reward value by calculating the weighted harmonic mean
of the minimum wall thickness, the negative residual stress and the left-over material.
The weight values reflect the emphasis, which is given to the respective goals. The first
approach requires requires a high effort in sampling experimental data and training of
the models, before it can be applied to the process, but produces nearly optimal results
from scratch despite being subject to processing noise. The second approach requires no
sampling or training before the start of production. The price is lower performance in
the early phase of production, while the models are learnt. It was shown in [1], that in
the case of variantions in the friction between material and matrix/blank-holder /punch
during processing, which occur due to roughness variations of the sheet material, the
second approch learnt to cope with the variations and out-performed the first approach
by 20% on the long run.
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