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Abstract. Common challenges in fault diagnosis include the lack of labeled data
and the need to build models for each domain, resulting in many models that
require supervision. Transfer learning can help tackle these challenges by learning
cross-domain knowledge. Many approaches still require at least some labeled data
in the target domain, and often provide unexplainable results. To this end, we
propose a supervised transfer learning framework for fault diagnosis in wind tur-
bines that operates in an Anomaly-Space. This space was created using SCADA
data and vibration data and was built and provided to us by our research part-
ner. Data within the Anomaly-Space can be interpreted as anomaly scores for
each component in the wind turbine, making each value intuitive to understand.
We conducted cross-domain evaluation on the train set using popular supervised
classifiers like Random Forest, Light-Gradient-Boosting-Machines and Multilayer
Perceptron as metamodels for the diagnosis of bearing and sensor faults. The Mul-
tilayer Perceptron achieved the highest classification performance. This model was
then used for a final evaluation in our test set. The results show, that the pro-
posed framework is able to detect cross-domain faults in the test set with a high
degree of accuracy by using one single classifier, which is a significant asset to the
diagnostic team.
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Detection, Fault Diagnosis, Transfer Learning

1 Introduction

In Germany, electricity generated from wind turbines (WTs) makes up a large portion
of the total generated energy from renewable energy sources [1]. In order to increase
the total energy yield, it is very important to reduce total downtimes by monitoring
critical aspects of WTs. With condition monitoring, faults can be detected early and
maintenance times and measures can be planned accordingly. This further reduces the
risk of total failure due to the propagation of the faults to other areas of the machine.
The total amount of WTs is increasing, with each of them equipped with more and
more sensors over the years. Hence, this raises the amount of components, that can
be measured which leads to higher costs and more signals, that need to be monitored.
Furthermore, when a fault has been detected, we still need to infer the type of fault and
localize it, e.g. which component(s) is/are affected. With an increasing amount of signals,
there is need for more and more highly specialized personnel in order to monitor these
machines manually. Therefore, we propose a solution that automates this whole process
from end-to-end.
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Supervised learning is a method for performing intelligent fault diagnosis on WTs. In
literature, numerous solutions based on supervised learning are available [2, 3, 4]. How-
ever, these solutions typically focus solely on diagnosing faults in one particular machine,
resulting in the development of separate models for each machine. Transfer learning is a
promising approach to use knowledge extracted from a subset of WTs to multiple other
ones. This can decrease the total model count needed for reliable fault diagnosis. Addi-
tionally, transfer learning based fault diagnosis is not limited to detect only those fault
types, that have been occurred in the past on that particular WT, since fault data from
other WTs can also be used for the diagnosis. Many transfer learning solutions for WTs
exist. Zhang et al. [5] built a fully connected neural network which is able to detect,
whether ice are on the WT blades by only using SCADA data. A small data set from
another WT was used to fine-tune the model. Yang et al. [6] are able to detect blade
defects by segmenting blade images with the otsu threshold segmentation algorithm and
then using a pre-trained Alexnet classifier for the feature extraction. A Random Forest
was used for the fault diagnosis in the last step. Li et al. [7] pre-trained a convolutional
autoencoder on SCADA data from 14 WTs and fine-tuned the model on data from the
15th WT in order to detect fault types like high temperature in gearbox or generator or
low pressure of the hydraulic system. A stacked autoencoder was employed by Deng et
al. [8] by pretraining the model on source data and then utilizing and fine-tuning a fully
connected layer for the diagnosis in the target domain.

The aforementioned solutions have the limitation, that some labeled data in the source
domain have to be available. Furthermore, features extracted with the help of neural net-
works are mostly abstract and not interpretable for diagnosticians. If the fault diagnosis
system indicates that a fault is present, then it has to be clear to the diagnostician, how
the decision was made. To this end, we propose a fault diagnosis framework, which oper-
ates in an Anomaly-Space. This new feature space provides several normalized anomaly
scores for each WT component, for every available WT. Values above 1.0 are consid-
ered anomalous. It was built and provided to us by our research partner EnBW Energie
Baden-Württemberg AG. Both SCADA data and vibration data were used for the cre-
ation of the Anomaly-Space. A supervised classifier takes data from the Anomaly-Space
as input and provides fault diagnosis results. These results can easily be interpreted by
diagnosticians, since features in the Anomaly-Space represent deviations from the nor-
mal behavior of the WT. This can be seen as a feature-based transfer learning approach,
where the Anomaly-Space represents the domain-shared feature space.

In summary, the contributions of this paper are the following:

1. Fault diagnosis based on derived signals from SCADA data and vibration data, that
are easily interpretable, in contrast to many other transfer learning approaches.

2. Extensive model training and evaluation with stratified cross-validation from real
data across 5 WTs from 4 wind parks and comparing classification performance of
popular supervised classifiers, such as Random Forest (RF), Light-Gradient-Boosting-
Machines (LightGBM) and Multilayer Perceptron (MLP).

3. Showing transfer learning capabilities by applying the best performing classifier from
the aforementioned analysis on a new test set, which consists of 2 WTs from 2 wind
parks, one of which is a completely different wind park compared to the train set.

This paper is organized as follows: In section 2, we give an overview about the dataset.
This includes a brief description and explanation of the Anomaly-Space. In section 3,
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some background information about transfer learning in fault diagnosis is given. Our
supervised fault diagnosis framework is introduced in section 4. Results are shown in
section 5 and conclusions are made in section 6.

2 Dataset Description

The dataset we used contains fault-types and anomaly scores, which are deduced from
SCADA data and vibration data. Two common faults can be found within the data:
bearing fault and sensor fault. Bearing faults are common and severe faults in WTs.
Ignoring these can result in a total failure of the machine and leads to substantial down-
times and repair costs. Therefore, there is a huge interest in detection of bearing faults
as early as possible.

Faulty sensors are also very common in WTs, but are very cheap to replace in terms
of raw material cost and are not damaging the WT itself. At a first glance, this might
not be as important, but these type of faults can lead to several problems. Unnecessary
maintenance works could be performed if sensor faults are confused with a more serious
disturbance. Consequently, diagnosticians and technicians might increasingly distrust the
fault diagnosis application and/or mistake a serious fault with a sensor fault.

SCADA data are typically used for condition monitoring in WTs. In general, the term
SCADA stands for ”Supervisory Control and Data Acquisition” and refers to the moni-
toring and control of technical processes using data that originates from sensors, actua-
tors and other field devices and is sent to a control system. Among other things, process
variables such as temperature, pressure and similar values are recorded. Each recorded
10-minute window is aggregated into four scalar values: minimum, maximum, standard
deviation and average. Vibration sensors are able to capture data in a much higher sam-
ple rate than SCADA and are commonly used to identify early signs of wear, imbalance,
or misalignment in rotating machinery.

The data originates from a total of 7 WTs, across 5 different wind parks. All fault cases
with further information are listed in Table 1. Our train set (case 1 to 6) consists of data
from 5 WTs, which are from 4 different wind parks. The test set (case 7 and 8) has data
from 2 WTs, one of which is from a completely different wind park.

Table 1. More information about the data. The train data is considered the source data,
validation and test data are considered target data. P = park, U = unit, (N)DE = (Non-)Drive
End.

Park/Unit Fault-Type Fault-Location Dataset Case-No.

P1/U1 sensor fault temperature generator phase 3 train/validation 1
P2/U1 sensor fault temperature transformator phase 3 train/validation 2
P2/U1 sensor fault temperature generator phase 1 train/validation 3
P3/U1 bearing fault Fast Shaft Bearing DE train/validation 4
P3/U2 bearing fault Fast Shaft Bearing NDE train/validation 5
P4/U1 bearing fault Fast Shaft Bearing DE train/validation 6

P1/U2 sensor fault temperature generator phase 2 test 7
P5/U1 bearing fault Fast Shaft Bearing DE test 8
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2.1 Anomaly-Space

The Anomaly-Space refers to a feature space, that has been constructed by using multiple
proprietary algorithms, denoted as detectors. The input of these detectors are SCADA
data and vibration data.

Detectors are monitoring critical components of the WT and provide anomaly scores,
which represent a deviation from the normal behavior. These values are normalized such
that measurements with values above 1.0 are considered anomalous.

Broad-Band-Characteristic-Value (bbcv) is one of the detectors. This detector first cap-
tures multiple windows of vibration data when pre-defined conditions have been met
(e.g. approximately constant wind speeds). Several features are then extracted from the
raw vibration data and from the frequency domain, after applying the Fast-Fourier-
Transformation (FFT), such as skewness, kurtosis and average values. In the last step,
the trendiness of the aforementioned features with the help of hypothesis testing is be-
ing calculated. Bearing faults will usually result in an increased trendiness in multiple
features.

Another detector is the tuplet detector. This detector is designed to detect SCADA data
deviations from groups of semantically similar components, for example the generator
temperature of all three voltage supply phases. This is being achieved by monitoring
the variance of the measurements of these components. A sensor fault in any of these
components significantly increases the variance. A statistical test quantifies the difference
to the expected null hypothesis, null hypothesis being a variance value of 0.

The procedure of both detectors are depicted in Figure 1 and Figure 2.

The Anomaly-Space is provided to us by our research partner EnBW Energie Baden-
Württemberg AG and is used as input data to our preprocessing steps and metamod-
els.
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Fig. 1. tuplet detector procedure
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Fig. 2. bbcv detector procedure

3 Transfer Learning in Fault Diagnosis

Fault diagnosis can be decomposed into fault detection and fault classification. Fault de-
tection (e.g. using anomaly/outlier detection) is the detection of deviations from normal
behavior in the data. These deviations come from either a fault within the monitored
system, or from a faulty measuring device. The transformation of the input data can help
in detecting faults, that are otherwise not visible.
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To be able to diagnose the type of fault, the transformed data can then be classified into
pre-defined fault-classes (labels) using supervised classification algorithms.

One of the challenges of fault diagnosis is the lack of labels, since faults occur rarely. In
the context of WTs, there might be many fault-labels available across all available WTs.
However, there are many reasons why it is still not eligible to train a ML model on one
WT and apply it on another without some modifications. For example, WTs may come
from different manufacturers and therefore have different components, which results in
non-similar signal patterns. Consequently, at least one model for each WT needs to be
created.

Transfer learning aims to capture domain-invariant knowledge from just few available
domains and apply this knowledge onto other domains. In the context of WTs, for in-
stance, the objective is to leverage insights gained from a few WTs and extend them to
others.

There are 4 types of transfer learning methods according to Lei et al. [9]: feature-based
approaches, GAN-based approaches, instance-based approaches and parameter-
based approaches. Feature-based approaches map cross-domain data into a common
feature space and decrease the distribution discrepancy before applying a classifier. GAN-
based approaches utilize the GAN framework in order to learn the distribution of the
target data and generate new ones to improve the classifier. Instance-based approaches
reweight misclassified instances from source and target domain, increasing/decreasing the
influence of those instances on the fault diagnosis classifier. Parameter-based approaches
train models (e.g. neural networks) on the source data and fine-tune the learned model
parameters on the target data. Instance- and parameter-based approaches assume, that
few labeled samples of the target domain are available. Our solution can be regarded
as a feature-based TL approach without the step of further decreasing the distribution
discrepancy. This space is designed to represent deviations from the individual normal
behavior, making each value intuitive to understand.

4 Supervised Fault Diagnosis Framework

A general overview of the proposed fault diagnosis framework is depicted in Figure 3.

The dataset labels are generated using fault time frames (appearance dates and repair
dates) provided by diagnosticians. Data from within the fault time frames are labeled with
the corresponding fault type. Data outside these time frames are labeled as ”Normal”.
Data that are not within the normal operating-mode of the WT (e.g. stillstand or wind
speeds below a specified threshold) have been omitted. A time-based forward fill was
applied, filling missing values for up to 3 hours after the first occurrence. Remaining
data gaps are filled with the value 0.0.

The resulting data frame has data from each available WT component as observations
(rows) with each detector output being a feature (column).

The amount of features provided by the bbcv detector is reduced to one single feature, by
only keeping the feature with the largest variance. Consequently, both detectors provide
only a single feature each, resulting so far in 2 total features.

Sliding-window based feature extraction has been employed in order to capture the re-
lationship between neighbored data samples, with a window-size of 144 and a stride of
1. The extracted features are trend-certainty (tc) and variance (var). The Mann-Kendall
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Fig. 3. Proposed fault diagnosis framework

test is a statistical test for determining trends in data. We used Equation 1 to determine
the value of our trend-certainty feature, with pmk being the p-value for having a positive
trend within a window. The values of both features have been manually set to 0.0, if the
window contains only values below 1.0. The final feature count has been increased to 6
after extracting those features.

For MLP, the base features, e.g. the outputs of both detectors, have been normalized
with a min-max scaler.

tc =

{
1 if pmk < 0.001,

0 otherwise.
(1)

5 Results & Discussion

Stratified 3-fold cross-validation was used for evaluation on the train data. We chose the
fβ-score with β = 0.5 as our evaluation metric. This way, precision has a larger impact
than recall. This choice was made because trusting the fault diagnosis is crucial, which
can be achieved by minimizing false positive predictions; therefore, precision should be
weighted more heavily. Additionally, measurements from faulty sensors could occasionally
resemble healthy ones, if the root-cause is loose contact. There could be multiple days
of data within the fault time frame, where the sensor delivers non-faulty measurements.
Weighting precision and recall equally (e.g. with β = 1) would provide overly pessimistic
evaluation values in these cases.

5.1 Comparison between different classifiers on train data

Several popular classifiers were used for our evaluation on the train data: RF, LightGBM
and MLP. We created a baseline model which classifies each instance with bbcv values
above 1.0 as bearing fault and tuplet values above 1.0 as sensor fault, which we simply
termed Above-One. The results are depicted in Figure 4. The best performing model
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is MLP, achieving a F0.5 score of 0.874 with the following hyperparameters: ReLU
activation function, Adam optimizer, learning rate of 0.001 and 1 hidden layer with 5
neurons.

A O LightGBM MLP RF

Fig. 4. Average stratified cross-validation results

5.2 Evaluating the best classifier on test data

The MLP was trained on the whole train data with the best parameters and then ap-
plied on the test data. Table 1 shows the results. The model achieved a F0.5 score of
0.937.

Table 2. Evaluation results on test data.

Method F0.5 score F1 score Precision Recall

mlp 0.937 0.871 0.992 0.789

5.3 Discussion

It can be seen from Figure 4 and Table 2, that higher evaluation scores have been achieved
in the test data (0.874 vs. 0.937). This is due to data quality issues, that are present in the
train data. More precisely, there is a loose contact sensor fault case, in which multiple
signal segments appear normal, within the fault time frame. These segments can be
present multiple days. This complicates the fault diagnosis evaluation, since our window
size for our feature extraction methods is approximately one day. Possible solutions would
be to increase the window size or to split the fault time frame into multiple smaller ones
to increase the coverage of the visible fault pattern.

6 Conclusion & Future Work

In this paper, a fault diagnosis framework based on an Anomaly-Space is proposed. The
Anomaly-Space is a feature space, in which deviations from normal behavior (anomaly
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scores) for each WT component are encoded. Window-based features are then extracted
from the Anomaly-Space, such as trend values extracted with the Mann-Kendall test.
This new feature space provides intuitive values which can help explain fault diagno-
sis results, since these values represent deviations from the normal behavior in contrast
to many other approaches. This framework can be regarded as a feature-based trans-
fer learning method without further decreasing the distribution discrepancy. Supervised
classifiers such as Random Forest, Light-Gradient-Boosting-Machines and Multilayer Per-
ceptron are compared on the train data with stratified cross-validation. The Multilayer
Perceptron achieved the highest classification performance in diagnosing bearing and
sensor faults and was tested on 2 new WTs, one of which stems from a different wind
park, compared to the train data. This final evaluation also showed good results, making
this a promising fault diagnosis approach for cross-domain fault diagnosis. Future work
could include Out-Of-Distribution (OOD) detection to the framework, in order to detect
previously unseen fault types.
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[1] Geschäftsstelle der Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat) am
Umweltbundesamt. Erneuerbare Energien in Deutschland Daten zur Entwicklung
im Jahr 2023. Accessed: 7-19-2024. url: https://www.umweltbundesamt.de/
publikationen/erneuerbare-energien-in-deutschland-2023.

[2] Guoqian Jiang et al. “Multiscale Convolutional Neural Networks for Fault Diagnosis
of Wind Turbine Gearbox”. In: IEEE Transactions on Industrial Electronics 66.4
(2019), pp. 3196–3207. doi: 10.1109/TIE.2018.2844805.

[3] Yanting Li, Shujun Liu, and Lianjie Shu. “Wind turbine fault diagnosis based on
Gaussian process classifiers applied to operational data”. In: Renewable Energy 134
(2019), pp. 357–366. issn: 0960-1481. doi: 10.1016/j.renene.2018.10.088.

[4] Zhi-Xin Yang, Xian-Bo Wang, and Jian-Hua Zhong. “Representational Learning
for Fault Diagnosis of Wind Turbine Equipment: A Multi-Layered Extreme Learn-
ing Machines Approach”. In: Energies 9.6 (2016). issn: 1996-1073. doi: 10.3390/
en9060379.

[5] Chengkai Zhang, Junchi Bin, and Zheng Liu. “Wind turbine ice assessment through
inductive transfer learning”. In: 2018 ieee international instrumentation and mea-
surement technology conference (i2mtc). IEEE. 2018, pp. 1–6. doi: 10.1109/I2MTC.
2018.8409794.

[6] Xiyun Yang et al. “Image recognition of wind turbine blade damage based on a
deep learning model with transfer learning and an ensemble learning classifier”. In:
Renewable Energy 163 (2021), pp. 386–397. doi: 10.1016/j.renene.2020.08.125.

[7] Yanting Li et al. “Wind turbine fault diagnosis based on transfer learning and con-
volutional autoencoder with small-scale data”. In: Renewable Energy 171 (2021),
pp. 103–115. doi: 10.1016/j.renene.2021.01.143.

https://www.umweltbundesamt.de/publikationen/erneuerbare-energien-in-deutschland-2023
https://www.umweltbundesamt.de/publikationen/erneuerbare-energien-in-deutschland-2023
https://doi.org/10.1109/TIE.2018.2844805
https://doi.org/10.1016/j.renene.2018.10.088
https://doi.org/10.3390/en9060379
https://doi.org/10.3390/en9060379
https://doi.org/10.1109/I2MTC.2018.8409794
https://doi.org/10.1109/I2MTC.2018.8409794
https://doi.org/10.1016/j.renene.2020.08.125
https://doi.org/10.1016/j.renene.2021.01.143


9

[8] Ziwei Deng et al. “A deep transfer learning method based on stacked autoencoder
for cross-domain fault diagnosis”. In: Applied Mathematics and Computation 408
(2021), p. 126318. doi: 10.1016/j.amc.2021.126318.

[9] Yaguo Lei et al. “Applications of machine learning to machine fault diagnosis: A
review and roadmap”. In: Mechanical systems and signal processing 138 (2020),
p. 106587. doi: 10.1016/j.ymssp.2019.106587.

https://doi.org/10.1016/j.amc.2021.126318
https://doi.org/10.1016/j.ymssp.2019.106587

	Supervised Transfer Learning Framework for Fault Diagnosis in Wind Turbines

