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Abstract. Safe, efficient and uninterrupted continuous operation of an electric
motor requires real-time condition monitoring of its rotating parts. Other than
knowledge based signal analysis, fault feature extraction with statistical informa-
tion or signal processing methods can be used to classify different fault patterns.
But rule based feature extraction methods do not have domain adaptability, so
the fault classification working in one system may not work for another system. A
deep learning algorithm - Convolution Neural Networks approach is shown in this
paper to classify different bearing faults and the trained network shows a good
fault prediction capability for other systems.
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1 Introduction

To avoid unwanted shut-down due to rotating machine fault in a manufacturing line ,
in a remote power plant and in many other applications a real-time monitoring of the
machine condition is a high demand.The aim of Condition Monitoring (CM) of electric
machines is to acquire a “health” indication in real-time; in order to identify possible
failures in advance, thus avoiding costly and unscheduled down time, upholding accurate
servicing schedules [1]. An ideal CM method should be non-destructive and should depend
on easily measurable parameters|2]. In contrast to sensor-based techniques, data-driven
condition monitoring methods are interesting because they do not require any knowledge
about the machine parameters; instead, they only require a database of both healthy and
faulty conditions of the machine for eventual feature extraction and classification. Rule
based feature extraction and classification of machine conditions are studied in many
publications[2-5]. The accuracy of classifying faults mainly depends on how accurate the
feature extraction is.The limitation of hand crafted feature extraction is, the classification
working in one domain most cases do not work in other domains. Deep Learning is a
subclass of Machine Learning (ML) algorithm which can extract features directly from
data without prior knowledge or mathematical background of input and then classify as
required. Convolutional Neural Networks (CNN) is one Deep Learning technique believed
to be the most popular ML algorithm in present time. Because of the advancement of
computation technology and efficiency of CNN, it is now a widely used algorithm among
researchers to solve many real time problems in various fields of natural science, computer
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science and engineering. In recent years many publications studied CM using CNN and
Deep Neural Networks (DNN)[6-9]. [10]show a domain adaptability of classifying different
bearing vibration signal using CNN . [11]proposed hierarchical deep architecture of CNN
in which original data is converted into 2D data to classify bearing faults and their sizes.
Many of the published work of CM with CNN approaches show very high accuracy, but
these are mostly tested on the same dataset. In this work, we propose a simple CNN
architecture for classifying bearing faults from 1D vibration signal, which is trained with
one test bench dataset and tested on different test bench data. We propose an analysing
approach of extracted features by the trained CNN model.

2 Convolutional Neural Networks (CNN)

Convolutional Neural Networks were inspired from the biological process of connectivity
pattern of cells of visual cortex of cat and monkey published by Hubel and Wiesel in
1962 and 1968. They showed how without moving the eyes individual cortical neurons
respond to stimuli only in a restricted region of the visual field known as receptive field.
Modern CNN models also use the similar kind of approach to extract simple to more
complex features of input image for classification or detection.

3 Proposed CNN Approach

The main constraint of training CNN models for classifying faults of motor is to have ac-
cess of a large dataset. In our research project we develop a test-bench (IEEM-CMTestBench)
to create different faulty bearing vibration data, but the challenge remains to implement
real life faults on bearings. While the project is still in process, to continue our investiga-
tion we used a public dataset to train CNN model to classify bearing faults. We named
our CNN model as CMCNN-Condition Monitoring Convolutional Neural Network. The
trained CMCNN shows high accuracy to classify different bearing faults and finally we
test the trained CMCNN model with a different system dataset to verify the model
accuracy. The proposed approach is described in the following chapters:

3.1 Training Dataset

The bearing dataset for different faults is prepared by Case Western Reserve University
(CWRU)[12] and the dataset is used to train CNN models in number of publications[8,
10,6]. CWRU dataset provides vibration data for normal bearings (No Fault) and faulty
bearings. Faults are artificially implemented on Inner Race (IR Fault), Rolling Element
(RE Fault) and Outer Race (OR Fault) of both Drive-End (DE) and Fan-End (FE) bear-
ings using electro-discharge machining (EDM). Fault diameters are ranging from 0.007
inches to 0.028 inches in diameter and vibration measurements are taken at 4 different
loads.In order to quantify vibration response effect with load zone, measurements were
conducted for both bearings with OR Faults located directly in the load zone(OR@3),
at orthogonal to the load zone (OR@3), and at 12 o’clock(OR@12).

3.2 Data Preparation and Data Argumentation

The CWRU dataset includes 6 classes: No Fault, IR Fault, RE Fault, OR@6 Fault,
OR@3 Fault and OR@12 Fault. Each class has less than 30 or sometimes even less
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than 15 datasets. Generally for successful classification with a Deep Learning Algorithm
a minimum of 1000 dataset per class is required. Similarly as[10] we also apply data
argumentation to segment each signal data into smaller sizes to increase the number of
datasets per classes. In this work, we consider to segment the signal in a way that the
input data fed to the CNN model should be equivalent approximately to unit revolution
of the bearing. To differentiate random vibrations to faulty or healthy vibration a set of
Random Noise is also included in the Training Data.

Our work is comparable with [10] for CNN model design in some extend, where the
authors used CWRU datasets to classify 10 classes. In their work each class has a certain
size of fault (0.007 to 0.021 inch) and the 10 classes data are decided into 4 combinations of
loads for training. In our work we classify five bearing fault classes and one No fault class,
by extracting feature from data of all different fault sizes and loads of measurements.

3.3 CMCNN Architecture

The CMCNN contains five layers each containing Convolution (Conv) Layer, Rectified
Linear Unit (ReLU) or Activation Layer and Max Pool (Pool) Layer for feature extraction
and three Fully Connected Layers (FC) with 50% dropouts for classification. The model is
designed and trained with MATLAB deep learning functions. The CMCNN architecture
is shown in 1. The main block of a CNN is the Conv Layer, which is done by sliding
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Fig. 1. CMCNN Architecture

a filter or kernel over the input data producing feature map for each covered location
(receptive field) of the input and each layer contains multiple numbers of trainable filters.
The two main parameters to modify the behaviour of each Conv layer are Stride(s) and
Padding (p) and filter size. Stride controls how filters convolves around the input and
padding is often use to preserve the information of original input. The size of output
feature of Conv Layer can determine by Equation 1.

Inp’Mtsize + 2p B filtersize

Outoutgj,e = . +1 (1)
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Generally in image recognition problems the filter size is very small and most of the
time zero padding is considered. As the target of CMCNN is to find features from raw
vibration data, it does not make sense to extract a very small scaled feature and the
Conv Layers should preserve original information of input as much as possible. The idea
of implementing wide filters in the first convolution layer is shown in [10]. The Conv
Layers of CMCNN starts with wider filters and reduced gradually in later layers. Stride
and Padding are parametrized in a way that the original input information is kept as
much as possible. In CMCNN the number of filters and neurons at FC layers are chosen
similar as VGG16 [13].

3.4 Training CMCNN

The Training dataset is divided 25% for validation and 2.5% data for testing. CMCNN
network training parameters are updated with Stochastic Gradient Descent with Mo-
mentum (SGDM) algorithm. Stochastic Gradient Descent (SGD) algorithm is used to
train network parameter to minimize the Error Function by converging to negative gra-
dient loss, which might oscillate to reach optimum and convergence can be very slow.
Momentum can be added to reduce the oscillation. A network parameter update by SGD
can be expressed by Equation 2.

9i+1 = @1 - OéVE(@Z) (2)

where i is the iteration number o > 1 is the learning rate, © is parameter vector, E(6;) is
the loss function and aVE(6;) is the gradient of the Error Function. SGD evaluates the
gradient and update the parameter using subset of the training set. Training parameter
update with SGDM can be expressed by Equation 3.

81',4_1 = @Z — (XVE(@Z) + ’}/(91 — Qi-i—l) (3)

where v determines the contribution of the previous gradient step to the current iteration.
Training performance of CMCNN is shown in 1. True Positive Rate (TPR%) and False
Positive Rate (FPR%) is calculated to determine the prediction accuracy per class. 1 also
include prediction accuracy of OR and IR Fault class of two new Test data (SpectrQ).
SpectrQ dataset is described in later sections.

Table 1. Trained CMCNN 7class performance

Learned Class and corresponding Labels

No IR RE OR@6 |OR@3 |OR@12|Random
Fault Fault Fault Fault Fault Fault Noise

Model: CMCNN_7class

Mean Acc.: 94,48% 0 1 2 3 4 5 6
Mean Error: 5,51%

Train. Class Dist 4943 4959 4873 3131 3342 2136 2151
Val. Class Dist 1664 1647 1711 1106 1125 687 790
Train. TPR (%) 99,98 90,18 96,80 89,01 91,46 95,37 100
Train. FPR (%) 0,02 [9,82 320 [10,99 [854 (4,63 |0
Val. TPR (%) 99,94 89,42 96,54 88,57 90,62 93,53 100
Val. FPR (%) 0,06 10,58 3,46 [11,43 (9,38 [6,47 |0
SpectrQuest OR TPR, (%) |- - - 1,25 0 72,5 0
SpectrQuest OR FPR (%) [14,58 |2,5 9,17 - 0 - 0
SpectrQuest OR TPR (%) |- 96,67 |- - - - -
SpectrQuest OR FPR (%) |0 - 0 0,42 0 2,92 0
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3.5 Test CMCNN
In this work CMCNN model is trained and tested for a different number of class recog-

nition using CWRU dataset; in 2 four different Models are compared.

Table 2. Comparison CMCNN for different number of classes and their prediction accuracy for
SpetrQ Test data:

Model CMCNN CMCNN CMCNN CMCNN
7 Class 6 Class 5 Class 4 Class

No Fault 0 0 e 0

IR Fault 1 1 1 1

RE Fault 2 2 2 2

OR@6 Fault 3 3 3 3

OR@3 Fault 4 4 4 3
OR@12 Fault 5 5 5 3
Random Noise 6

Mean TrainAcc (%) 94,48 93,56 99,51 99,78

Mean TrainErr (%) 5,51 6,44 0,48 0,23
Mean ValAcc (%) 94,00 93,58 99,37 99,55
Mean ValErr (%) 6,00 6,42 0,63 0,45
Mean TestAcc (%) 94,2 91,99 99,15 100,00
Mean TestErr (%) 5,80 8,01 0,85 0,00
SpectrQ ORFault PredAcc (%) |73,75 81,17 45,83 0,83
SpectrQ ORFault PredErr (%) (26,25 18,33 54,16 98,75
SpectrQ IRFault PredAcc (%) 96,67 87,50 100 100
SpectrQ IRFault PredErr (%) 3,33 12,50 0 0

To check the efficiency of CMCNN, we tested this four trained CMCNN to predict
OR Fault and IR Fault for a new publicly available (SpectrQ) dataset [14] produced by
SepctrQuest test bench [15]. A comparison of Train Data-OR Fault and SpectrQ-OR
Fault is shown in Fig. 2. SpectrQ-OR fault location is not known, so we labelled the
dataset as target class ‘3’ and checked if the CMCNN can successfully predict class as
OR Fault independent where the fault location is. For this reason we trained one CMCNN
model for 4 classes where we labelled all OR Fault as ‘3’. The result shows though the
CMCNN accuracy for 4 classes is the highest, the robustness of predicting class for new
test data (SpectrQ-OR Fault) is worse.

3.6 Feature Map Analysis

To understand and optimize the feature extraction it is required to visualize deep layer
feature map. There are several approaches available to visualize the features, one is
to visualize the activations of the network and other is to visualize the convolution
weights. In Image recognition problems the output of each convolution layer can be
interpretable because the outputs are also another image or sometimes the sharpened
edges of the input image. For vibration input signals we should convert the feature output
into different domain to understand. In our work we analyse the first Conv layer output
by calculating it’s Fast Fourier transform (FFT) and compare each filter if significant
Feature Frequencies is extracted.In [10] authors also focused feature visualization with
FFT and showed feature distribution for each layer and each 10 classes using Stochastic
Neighbor Embedding (t-SNE). In our work, we focused on significant feature frequencies
of first Conv layer for each filters and for each classes. We found that feature frequencies
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Fig. 2. Comparison of two examples of Training Data for OR Fault (a), and Test data for OR
fault (b). Left: time domain data and Right: frequency domain data

are extracted in a range for each class and the extracted feature frequencies for test data
(SpectQ) also in similar range of its predicted class. Figure (5) shows the comparison of
feature frequencies of all 32 filters of first Conv layer of a Train Input-ORfault and Test
Input SpectrQ-OR Fault.
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Fig. 3. Feature Frequencies for all trained filters of first Conv Layer for (a) Train Input: OR
Fault and (b) Test Input Spectr@: OR, Fault

4 Conclusion

CMCNN shows good accuracy of predicting OR Fault and IR Fault for SpectrQ Test
data which indicates feature extraction of CMCNN is robust for different systems. In
future we will compare the filter size and input size effect on feature learning which
should find the optimized architecture of the CMCNN. In our research project we aimed
to implement real-life bearing faults such as surface fatigue, wear, electrical erosion,
plastic deformation due to overload etc. and create dataset using IEEM-CMTestBench.
Furthermore, the created dataset will be used to train the optimized CMCNN architecture
to achieve robust domain adaptable feature extraction and classification of real-life fault
pattern for motor bearing.
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