UR-ATI2020// 127

Optical 3D Object Recognition for Automated
Driving

Raphael Schwarz!, Marin Marinov? and Stefan Hensel®

!Offenburg University of Applied Sciences, 2Technical University of Sofia
rschwarl@stud.hs-offenburg.de, mbm@tu-sofia.bg, stefan.hensel@hs-offenburg.de

Abstract. In this contribution, we propose an system setup for the detection and
classification of objects in autonomous driving applications. The recognition algo-
rithm is based upon deep neural networks, operating in the 2D image domain. The
results are combined with data of a stereo camera system to finally incorporate
the 3D object information into our mapping framework. The detection system
is locally running upon the onboard CPU of the vehicle. Several network archi-
tectures are implemented and evaluated with respect to accuracy and run-time
demands for the given camera and hardware setup.

Keywords: Deep neural networks, autonomous driving, optical recognition, sys-
tem setup

1 Introduction

Team Schluckspecht from Offenburg University of Applied Sciences is a very successful
participant of the Shell Eco Marathon [1]. In this contest, student groups are to design
and build their own vehicles with the aim of low energy consumption. Since 2018 the
event features the additional autonomous driving contest.

In this area, the vehicle has to fulfill several tasks, like driving a parcour, stopping
within a defined parking space or circumvent obstacles, autonomously.

For the upcoming season, the Schluckspecht V car of the so called urban concept
class has to be augmented with the according hardware and software to reliably recog-
nize (i.e.detect and classify) possible obstacles and incorporate them into the software
framework for further planning.

In this contribution we describe the additional components in hard- and software that
are necessary to allow an opitcal 3D object detection. Main criteria are accuracy, cost
effectiveness, computational complexity for relative real time performance and ease of use
with regard to incorporation in the existing software framework and possible extensibility.

This paper consists of the following sections. At first, the Schluckspecht V system is
described in terms of hard- and software components for autonomous driving and the
additional parts for the visual object recognition. The second part scrutinizes the object
recognition pipeline. Therefore, software frameworks, neural network architecture and
final data fusion in a global map is depicted in detail. The contribution closes with an
evaluation of the object recognition results and conclusions.

2 System Setup

2.1 Schluckspecht Car

The Schluckspecht V is a self designed and self build vehicle according to the requirements
of the Eco Marathon rules. The vehicle is depicted in Figure 1.

UR-AI2020// 128

Fig. 1. Schluckspecht V energy efficient vehicle in urban concept class.

The main features are the relatively large size, including driver cabin, motor area
and a large trunk, a fully equipped lighting system and two doors that can be opened
separately.

For the autonomous driving challenges, the vehicle is additionally equipped with sev-
eral essential parts, that are divided into hardware, consisting of actuators, sensors, com-
putational hardware and communication controllers. The software is based on a middle
ware, CAN-Open communication layers, localization, mapping and path planning algo-
rithms that are embedded into a high level state machine.

2.2 Autonomous Driving Hardware

Actuators The car is equipped with two actors, one for steering and one for braking.
Each actor is paired with sensors for measuring steering angle and braking pressure.

Environmental Sensors Several sensors are needed for localization and mapping.
Backbone is a multilayer 3D laser scanning system (LiDAR), which is combined with an
inertial navigation system that consists of accelerometers, gyroscopes and magnetic field
sensors all realized as triads. Odometry information is provided from a global navigation
satellite system (GNSS) and two wheel encoders.

Communication Controller The communication is based on two separate CAN-Bus-
Systems, one for basic operations and an additional one for the autonomous functions.
The hardware CAN nodes are designed and build from the team coupling USB-, 12C-,
SPI- and CAN-Open-Interfaces. Messages are send from the central processing unit or
the driver depending on drive mode.

Central Computing Unit The trunk of the car is equipped with an industrial grade
high performance CPU and an additional graphics processing unit (GPU). CAN commu-
nication is ensured with an internal card, remote access is possible via generic wireless
components.

2.3 Software

Software Structure The Schluckspecht uses a modular software system consisting of
several basic modules that are activated and combined within a high level state ma-

UR-AT2020//129

chine as needed. An overview of the main modules and possible sensors and actuators is
depicted in Figure 2

A 4

SLAM - Module
Actuators P
Localization ‘ ‘ Mapping Y
Steering
actor l
IMU
Navigation - Module Object Recognition
Local Global :
actor < Planner Planner Detector | ‘ Fusion |
< GNSS
7y
Motor
Control ." LIDAR
Unit State Machine and
High Level Planning
A Stereo
Lighting il e
Control - Module System

Fig. 2. Software modules and component structure overview for autonomous driving.

Localization and Mapping The Schluckspecht V is running a simultaneous localiza-
tion and mapping (SLAM) framework for navigation, mission planning and environment
representation. In its current version we use a graph based SLAM approach based upon
the cartographer framework developed by Google [2]. We calculate a dynamic occupancy
grid map that can be used for further planning. Sensor data is provided by the LiDAR,
inertial navigation and odometry systems. An example of a drivable map is shown in
Figure 3. This kind of map is also used as base for the localization and placement of the
later detected obstacles.

The maps are accurate to roughly 20 centimeters, providing relative localization to-
wards obstacles or homing regions.

Path Planning To make use of the SLAM created maps, an additional module calcu-
lates the motion commands from start to target pose of the car. The Schluckspecht is
a classical car like mobile system which means that the path planning must take into
account the non holonomic kind of permitted movement. Parking maneuvers, close by
driving on obstacles or planning a trajectory between given points is realized as a com-
bination of local control commands based upon modeled vehicle dynamics, the so called
local planner, and optimization algorithms that find the globally most cost efficient path
given a cost function, the so called global planner. We employ a kinodynamic strategy, the
elastic band method presented in [3], for the local planning. Global planning is realized
with a variant of the A* algorithm as described in [4].

Middleware and Communication All submodules, namely, localization, mapping,
path planning and high-level state machines for each competition are implemented within

UR-AI2020//130

Fahrbahnbande,

Fig. 3. Exemplary occupancy grid map of the Offenburg test track, based on LiDAR, inertial
and odometry sensors.

the robot operating system (ROS) middleware [5]. ROS provides a messaging system based
upon the subscriber/publisher principle. The single modules are capsuled in a process,
called node, capable to asynchronously exchange messages as needed. Due to its open
source character and an abundance on drivers and helper functions, ROS provides addi-
tional features like hardware abstraction, device drivers, visualization and data storage.
Data structures for mobile robotic systems, e.g. static and dynamic maps or velocity
control messages, allow for rapid development.

2.4 3D Object Recognition

The LiDAR sensor system has four rays, enabling only the incorporation of walls and
track delimiters within a map. Therefore, a stereo camera system is additionally imple-
mented to allow for object detection of persons, other cars, traffic signs or visual parking
space delimiters and simultaneously measure the distance of any environmental objects.

Camera Hardware A ZED-stereo-camera system is installed upon the car and incor-
porated into the ROS framework. The system provides a color image streams for each
camera and a depth map from stereo vision. The camera images are calibrated to each
other and towards the depth information. The algorithms for disparity estimation are
running around 50 frames per second making use of the provided GPU.

Software Framework The object recognition relies on deep neural networks. To seam-
lessly work with the other software parts and for easy integration, the networks are
evaluated with tensorflow [6] and pyTorch [7] frameworks. Both are connected to ROS
via the openCV image formats providing ROS-nodes and -topics for visualization and
further processing.

3 Optical Object Recognition

The object recognition pipeline relies on a combination of mono camera images and
calibrated depth information to determine object and position. Core algorithm is a deep
learning approach with convolutional neural networks.

UR-AI 2020 // 131

3.1 Deep Convolutional Networks

Main contribution of this paper is the incorporation of a deep neural network object
detector into our framework. Object detection with deep neural networks can be subdi-
vided into two approaches, one being a two step approach, where regions of interest are
identified in a first step and classified in a second one. The second are so called single shot
detectors (like[8]), that extract and classify the objects in one network run. Therefore,
two network architectures are evaluated, namely YOLOv3 [9] as a single shot approach
and Faster R-CNN [10] as two step model. All are trained on public data sets and fine
tuned to our setting by incorporating training images from the Schluckspecht V in the
ZED image format.

The models are pre-selected due to their real time capability in combination with the
expected classification performance. This excludes the current best instance segmenta-
tion network Mask R-CNN [11] due to computational burdens and fast but inaccurate
networks based on the mobileNet backbone [12]. The class count is adapted for the con-
test, in the given case eight classes, including the relevant pedestrian, car, van, tram and
cyclist.

3.2 Architectures and Training

For this paper, the two chosen network architectures were trained in their respective
framework, i.e. darknet for the YOLOv3 detector and tensorflow for the Faster R-CNN
detector. YOLOvV3 is used in its standard form with the Darknet 53 backbone, Faster
R-CNN is designed with the ResNet 101 [13] backbone.

The models were trained on local hardware with the KITTI [14] data set. Alterna-
tively, an open source data set from the teaching company udacity, with only three classes
(truck, car, pedestrian) was tested.

To deal with the problem of domain adaptation, the training images for YOLOv3
were pre-processed to fit the aspect ratio of the ZED camera. The Faster R-CNN net can
cope with ratio variations as it uses a two stage approach for detection based on regions
of interest pooling.

Both networks were trained and stored. Afterward, their are incorporated into the
system via a ROS node making use of standard python libraries.

3.3 Information Fusion within Dynamic Map

The detector output is represented by several labeled bounding boxes within the 2D
image. Three dimensional information is extracted from the associated depth map by
calculating the center of gravity of each box to get a x and y coordinate within the
image. Interpolating the depth map pixels accordingly one gets the distance coordinate
z from the depth map to determine the object position p(z,y, z) in the stereo camera
coordinate system.

The ease of projection between dieeferent coordinate systems is one reason to use the
ROS middleware. The complete vehicle is modeled in a so calle tranform tree (tf-tree),
that allows the direct interpolation between different coordinate systems in all six spatial
degrees of freedom.

The dynamic map, created in the SLAM subsystem, is now augmented with the
current obstacles in the car coordinate system. The local path planner can take these
into account and plan a trajectory including kinodynamic constraints to prevent collision
or initiate a breaking maneuver.

UR-AI2020//132

4 Evaluation and Results

4.1 Training set evaluation

Both newly trained networks were first evaluated upon the training data. Exemplary
results for the KITTI data set are shown in Figure 4.

Fig. 4. Exemplary results for the object detectors on two KITTI images. YOLOv3 is in the
upper half, Faster R-CNN in the lower half (The image was cut to enlarge results).

The results clearly indicate an advantage for the YOLOv3 system, both in speed and
accuracy. The Figure depicts good results for occlusions (e. g. the car on the upper right)
or high object count (see the black car on the lower left as example). The evaluation on a
desktop system showed 50 fps for YOLOv3 and approximately 10 fps for Faster R-CNN.

4.2 ZED camera system evaluation

After validating the performance upon the training data, both networks were started as
a ROS node and tested upon real data of the Schluckspecht vehicle.

Table 1. Qualitative comparison of detection architectures.

Architecture Frame rate [fps] Detection quality Quality w.r.t. size
Vehicles Pedestrians large objects small objects
YOLOv3 9-10 ++ - + +
Faster R-CNN 4-5 ++ + ++ -

As the training data differs from the ZED-camera images in format and resolution,
several adaptions were necessary for the YOLOv3 detector. The images are cropped in
real time before presented to the neural net to emulate the format of the training images.
The R-CNN like two stage networks are directly connected to the ZED node.

The test data is not labeled as ground truth. It is therefore not possible to give
quantitative results for the recognition task. Table 1 gives a quantitative overview of

UR-AI2020//133

the object detection and classification, the subsequent Figures give some expression of
exemplary results.

The evaluation on the Schluckspecht videos showed an advantage for the YOLOv3
network. Main reason is the faster computation, which results in a frame rate nearly
twice as high compared to two stage detectors. In addition, the recognition of objects in
the distance, i. e. smaller objects is a strong point of YOLO. The closer the camera gets,
the bigger is the balance shift towards Faster R-CNN, that outperforms YOLO on all
categories for larger objects.

Fig. 5. Exemplary results for the object detectors on real Schluckspecht images (Persons colored
cyan, cars green).

Figure 5 shows results from the YOLO-detector for a mixture of persons and cars.
What becomes apparent is a maximum detection distance of approximately 30 meters,
from which on cars become to small in size. Figure 6 shows an additional result demon-
strating the detection power for partially obstructed objects.

Another interesting finding was the capability of the networks to generalize. Faster

R-CNN copes much better with new object instances than YOLOv3. Persons with so
far unknown cloth color or darker areas with vehicles remain a problem for YOLO, but

UR-AI2020// 134

Fig. 6. Exemplary results for the object detectors on real Schluckspecht images.

commonly not for the R-CNN. The domain transfer from training data in Berkeley and
KITTT to real ZED vehicle images proved problematic.

5 Conclusions

This contribution describes an optical object recognition system in hard- and software
for the application in autonomous driving under restricted conditions, within the Shell
Eco Marathon competition. An overall overview of the system and the incorporation of
the detector within the framework is given.

Main focus was the evaluation and implementation of several neural network detec-
tors, namely YOLOv3 as one shot detector and Faster R-CNN as a two step detector,
and their combination with distance information to gain a three dimensional information
for detected objects. For the given application, the advantage clearly lies with YOLOv3.
Especially the achievable frame rate of minimum 10 Hz allows a seamless integration into
the localization and mapping framework. Given the velocities and map update rate, the
object recognition and integration via sensor fusion for path planning and navigation
works in quasi real-time.

For future applications we plan to further increase the detection quality by incor-
porating new classes and modern object detector frameworks like M2Det [15]. This will
additionally increase frame rate and bounding box quality. For more complex tasks, the
data of the 3D-LiDAR system shall be directly incorporated into the fusion framework
to enhance the perception of object boundaries and object velocities.

References

1. Shell: The shell eco marathon. https://www.shell.de/ueber-uns/shell-eco-marathon.
html (2019)

2. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2d lidar slam. In:
IEEE International Conference on Robotics and Automation (ICRA). (2016) 1271 — 1278

3. Rosmann, C., Hoffmann, F., Bertram, T.: Kinodynamic trajectory optimization and con-
trol for car-like robots. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). (2017)

10.

11.

12.

13.

14.

15.

UR-AI2020// 135

Doran, J., Michie, D.: Experiments with the graph traverser program. Proceedings of the
Royal Society of London. 294 (1966) 235 — 259

Stanford Artificial Intelligence Laboratory et al.: Robot operating system. https://www.
ros.org (2015)

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F. Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous
systems (2015) Software available from tensorflow.org.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: Conference on Neural
Information Processing Systems (NIPS). (2017)

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C., Berg, A.C.: SSD: single
shot multibox detector. CoRR abs/1512.02325 (2016)

Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. CoRR abs/1804.02767
(2018)

Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate
object detection and semantic segmentation. CoRR abs/1311.2524 (2014)

He, K., Gkioxari, G., Dollar, P., Girshick, R.B.: Mask R-CNN. CoRR abs/1703.06870
(2017)

Howard, A., Zhu, M., Chen, B., Adam, H.: Mobilenets: Efficient convolutional neural net-
works for mobile vision applications. In: Conference on Computer Vision and Pattern
Recognition (CVPR). (2016)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR
abs/1512.03385 (2016)

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision
benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR).
(2012)

Zhao, Q.: M2det: A single-shot object detector based on multi-level feature pyramid network.
In: Association for the Advancement of Artificiallntelligence (AAAI). (2019)

