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Abstract. This paper presents the results of a comparison of deep neural net-
works for detection of small objects typical for manual manufacturing tasks. We
created a set of training, validation and evaluation data and selected four state of
the art deep neural networks for object detection. We trained them with the same
number of epochs, 200 epochs per network architecture and compared the training
time, accuracy and prediction time on evaluation data. Additional we compared
the neural networks on thirty images of three very small and similar components.
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1 Use Case and Requirements

Many tasks which only a few years ago had to be performed by humans can now be
performed by robots or will be performed by robots in the near future. Nevertheless,
there are some tasks in assembly processes which cannot be automated in the next few
years. This applies especially to workpieces that are only produced in very small series
or tasks that require a lot of tact and sensitivity, such as inserting small screws into a
thread or assembling small components.

In conversations with companies we have found out that a big problem for the workers
is learning new production processes. This is currently done with instructions and by
supervisors. But this requires a lot of time. This effort can be significantly reduced
by modern systems, which accompany workers in the learning process. Such intelligent
systems require not only instructions that describe the target status and the individual
work steps that lead to it, but also information on the current status at the assembly
workstation. One way to obtain this information is to install cameras above the assembly
workstation and use image recognition to calculate where an object is located at any
given moment.

The individual parts, often very small compared to the work surface, must be reliably
detected. We have trained and tested several deep neural networks for this purpose.

We have developed an assembly workstation where work instructions can be projected
directly onto the work surface using a projector. At a distance, 21 containers for compo-
nents are arranged in three rows, slightly offset to the rear, one above the other. These
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containers can also be illuminated by the projector. Thus a very flexible Pick-by-Light
system can be implemented. In order for the system behind it to automatically switch
to the next work step and, in the event of errors, to point them out and provide support
in correcting them, it is helpful to be able to identify the individual components on the
work surface.

Fig. 1. Our assembly Workstation with a projector, a camera and 21 containers for the compo-
nents.

We use a RealSense depth camera for this purpose, from which, however, we are
currently only using the colour image. The camera is mounted in a central position at
a height of about two meters above the work surface. Thus the camera image includes
the complete working surface as well as the 21 containers and a small area next to the
working surface.

The objects to be detected are components of a kit for the construction of various toy
cars. The kit contains 25 components in total. Some of the components vary considerably
from each other, but some others are very similar to each other. Since it is the same with
real components of a production, the choice of the kit seemed appropriate for the purposes
of this project.
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2 Related Work

Object detection, one of the most fundamental and challenging problems in computer
vision, seeks to local object instances from a large number of predefined categories in
natural images.

Until the beginning of 2000, a similar approach was mostly used in object detection.
Keypoints in one or more images of a category were searched for automatically. At
these points a feature vector was generated. During the recognition process, keypoints
in the image were again searched, the corresponding feature vectors were generated and
compared with the stored feature vectors. After a certain threshold an object was assigned
to the category. One of the first approaches based on machine learning was published by
Viola and Jones in 2001 [1]. They still selected features, in their case they were selected
by using a Haar basis function [2] and then using a variant of AdaBoost [3].

Starting in 2012 with the publication of AlexNet by Krizhevsky et al. [4], deep neural
networks became more and more the standard in object detection tasks. They used a
convolutional neural network which has 60 million parameters in five convolutional layers,
some of them are followed by max-pooling layers, three fully-connected layers and a final
softmax layer. They won the ImageNet LSVRC-2012 competition with a error rate almost
half as high as the second best.

Inception-v2 is mostly identical to Inception-v3 by Szegedy et al. [5]. It is based on
Inception-v1l [6]. All Inception architectures are composed of dense modules. Instead of
stacking convolutional layers, they stack modules or blocks, within which are convolu-
tional layers. For Inception-v2 they redesigned the architecture of Inception-v1 to avoid
representational bottlenecks and have more efficient computations by using factorisation
methods. They are the first using batch normalisation in object detection tasks.

In previous architectures the most significant difference has been the increasing num-
ber of layers. But with the network depth increasing, accuracy gets saturated and then
degrades rapidly. Kaiming et al. [7] addressed this problem with ResNet using skip con-
nections, while building deeper models.

In 2017 Howard et al. presented MobileNet architecture [8]. MobileNet was developed
for efficient work on mobile devices with less computational power and is very fast. They
used depthwise convolutional layers for a extremely efficient network architecture.

One year later Sandler et al. [9] published a second version of MobileNet. Besides some
minor adjustments, a bottleneck was added in the convolutional layers, which further
reduced the dimensions of the convolutional layers. Thus a further increase in speed
could be achieved.

In addition to the neural network architectures presented so far, there are also dif-
ferent methods to detect in which area of the image the object is located. The two most
frequently used are described briefly below. To bypass the problem of selecting a huge
number of regions, Girshick et al. [10] proposed a method where they use selective search
by the features of the base CNN to extract just 2000 regions proposals from the image.
Liu et al. [11] introduced the Single Shot Multibox Detector (SSD). They added some ex-
tra feature layers behind the base model for detection of default boxes in different scales
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and aspect ratios. At prediction time, the network generates scores for the presence of
each object in each default box. Then it produces adjustments to the box to better match
the object shape.

There is just one publication over the past few years which gives an survey of generic
object detection methods. Liu et al. [12] compared 18 common object detection architec-
tures for generic object detection. There are many other comparisons of specific object
detection tasks. For example pedestrian detection [13], face detection [14] and text de-
tection [15].

3 Training Dataset

The project is based on the methodology of supervised learning. Thereby the models
are trained using a training dataset consisting of many samples. Each sample within
the training dataset is tagged with a so called label (also called annotation). The label
provides the model with information about the desired output for this sample. During
training, the output generated by the model is then compared to the desired output
(labels) and the error is determined. This error on the one hand gives information about
the current performance of the model and, on the other hand it is used for further mathe-
matical computations to adjust the model’s parameters, so that the model’s performance
improves.

For the training of neural networks in the field of computer vision the following rule of
thumb applies: The larger and more diverse the training dataset, the higher the accuracy
that can be achieved by the trained model. If you have too little data and/or run it
through the model too often, this can lead to so-called overfitting. Overfitting means
that instead of learning an abstract concept that can be applied to a variety of data, the
model basically memorizes the individual samples [16,17]. If you train neural networks
for the purpose of this project from scratch, it is quite possible that you will need more
than 100,000 different images - depending on the accuracy that the model should finally
be able to achieve. However, the methodology of the so-called Transfer Learning offers
the possibility to transfer results of neural networks, which have already been trained for
a specific task, completely or partially to a new task and thus to save time and resources
[18]. For this reason, we also applied transfer learning methods within the project.

The training dataset was created manually: A tripod, a mobile phone camera (10
megapixel format 3104 x 3104) and an Apeman Action Cam (20 megapixel format
5120x3840) were used to take 97 images for each of the 25 classes. This corresponds
to 2,425 images in total (actually 100 images were taken per class, but only 97 were
suitable for use as training data). All images were documented and sorted into close-ups
(distance between camera and object less than or equal to 30 cm) and standards (dis-
tance between camera and object more than 30 cm). This procedure should ensure the
traceability and controllability of the data set. In total, the training data set contains
approx. 25% close-ups and approx. 75% standards, each taken on different backgrounds
and under different lighting conditions (see Fig. 2). The Labellmg tool was used for the
labelling of the data. With the help of this tool, bounding boxes, whose coordinates are
stored in either YOLO or Pascval VOC format, can be marked in the images [19].

For the training of the neural networks the created dataset was finally divided into:
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Fig. 2. An excerpt from the training data set - images of the component 32_064

— Training Data (90% of all labelled images): Images that are used for the training
of the models and that pass through the models multiple times during the training.

— Test Data (10% of all labelled images): Images that are used for later testing
or validation of the training results. In contrast to the images used as training data,
the model is presented these images for the first time after training. The goal of this
approach, which is common in Deep Learning, is to see how well the neural network
recognizes objects in images, that it has never seen before, after the training. Thus
it is possible to make a statement about the accuracy and to be able to meet any
further training needs that may arise.

4 Implementation

The training of deep neural networks is very demanding on resources due to the large
number of computations. Therefore, it is essential to use hardware with adequate per-
formance. Since the computations that run for each node in the graph can be highly
parallelized, the use of a powerful Graphical Processing Unit (GPU) is particularly suit-
able. A GPU with its several hundred computing cores has a clear advantage over a
current CPU with four to eight cores when processing parallel computing tasks [20].
These are the outline parameters of the project computer in use:

— Operating System (OS): Ubuntu 18.04.2 LTS
— GPU: GeForce ®GTX 1080 Ti (11 GB GDDR5X-Memory, data transfer speed 11
Gbit/s)

4.1 Selected Models

For the intended comparison the Tensorflow Object Detection API was used. Tensorflow
Object Detection API is an open source framework based on TensorFlow, which among
other things provides implementations of pre-trained object detection models for transfer
learning [21, 22]. The API was chosen because of its good and easy to understand docu-
mentation and its variety of pre-trained object detection models. For the comparison the
following models were selected:

— ssd_mobilenet_v1_coco:[11, 23, 24]

— ssd_mobilenet_v2_coco:[11, 25, 26]

— faster_rcnn_inception_v2_coco:[27-29]
— rfcn_resnet101_coco:[30-32]
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To ensure comparability of the networks, all of the selected pre-trained models were
trained on the COCO dataset [33]. Fundamentally, the algorithms based on CNN models
can be grouped into two main categories: region-based algorithms and one-stage algo-
rithms [34].

While both SSD models can be categorized as one-stage algorithms, Faster R-CNN
and R-FCN fall into the category of region-based algorithms. One-stage algorithms pre-
dict both - the fields (or the bounding boxes) and the class of the contained objects
- simultaneously. They are generally considered extremely fast, but are known for their
trade-off between accuracy and real-time processing speed. Region-based algorithms con-
sist of two parts: A special region proposal method and a classifier. Instead of splitting
the image into many small areas and then working with a large number of areas like con-
ventional CNN would proceed, the region-based algorithm first proposes a set of regions
of interest (ROI) in the image and checks whether one of these fields contains an ob-
ject. If an object is contained, the classifier classifies it [34]. Region-based algorithms are
generally considered as accurate, but also as slow. Since, according to our requirements,
both accuracy and speed are important, it seemed reasonable to compare models of both
categories.

4.2 Training Configuration

Besides the collection of pre-trained models for object detection, the Tensorflow Object
Detection API also offers corresponding configuration files for the training of each model.
Since these configurations have already shown to be successful, these files were used as
a basis for own configurations. The configuration files contain information about the
training parameters, such as the number of steps to be performed during training, the
image resizer to be used, the number of samples processed as a batch before the model
parameters are updated (batch size) and the number of classes which can be detected.

To make the study of the different networks as comparable as possible, the training of
all networks was configured in such a way that the number of images fed into the network
simultaneously (batch size) was kept as small as possible. Since the configurations of some
models did not allow batch sizes larger than one, but other models did not allow batch
sizes smaller than two, no general value for all models could be defined for this parameter.
During training, each of the training images should be passed through the net 200 times
(corresponds to 200 epochs). The number of steps was therefore adjusted accordingly,
depending on the batch size. If a fixed shape resizer was used in the base configurations,
two different dimensions of resizing (default: 300x300 pixels and custom: 512x512 pixels)
were selected for the training. Table 1 gives an overview of the training configurations
used for the training of the different models.

Table 1. Overview of different training runs, configurations and durations

Model Batch Size| Steps |Epochs Image Resizer Total Loss|Training Duration
keep_aspect_ratio_resizer fixed_shape_resizer
min_dimension / max_dimension| height / width
ssd_mobilenet_v1_coco 2 217 500 200 - 512 / 512 5.759 11h 51m 45s
ssd_mobilenet_v1_coco 2 217 500 200 - 300 / 300 5.889 09h 45m 45s
ssd_mobilenet_v2_coco 2 217 500 200 - 512 / 512 3.289 12h 23m 49s
ssd_mobilenet_v2_coco 2 217 500 200 - 300 / 300 3.516 09h 41m 47s
faster_rcnn_inception_v2_coco 1 435 000] 200 600 / 1024 - 0.066 14h 35m 46s
rfcn_resnet101_coco 1 435 000 200 600 / 1024 - 0.031 26h 39m 27s
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5 Evaluation

In this section we will first look at the training, before we then focus on evaluating the
quality of the results and the speed of the selected convolutional neural networks.

5.1 Training

When evaluating the training results, we first considered the duration that the neural
networks require for 200 epochs (see Fig. 3). It becomes clear that especially the two
Region Based Object Detectors (Faster R-CNN Inception V2 and RFCN Resnet101)
took significantly longer than the Single Shot Object Detectors (SSD Mobilenet V1 and
SSD Mobilenet V2). In addition, the Single Shot Object Detectors clearly show that the
size of the input data also has a decisive effect on the training duration: While SSD
Mobilenet V2 with an input data size of 300x300 pixels took the shortest time for the
training with 9 hours 41 minutes and 47 seconds, the same neural network with an input
data size of 512x512 pixels took almost three hours more for the training, but is still far
below the time required by RFCN Resnet101 for 200 epochs of training.
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Fig. 3. The training duration for 200 epochs and two different input image sizes.

5.2 Quality of detection

The next point in which we compared the different networks was accuracy (see Fig. 4).
We focused on seeing which of the nets were correct in their detections and how often
(absolute values), and we also wanted to see what proportion of the total detections were
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correct (relative values). The latter seemed to us to make sense especially because some
of the nets showed more than three detections for a single object. The probability that
the correct classification will be found for the same object with more than one detection
is of course higher in this case than if only one detection per object is made. With regard
to the later use at the assembly table, however, it does not help us if the neural net
provides several possible interpretations for the classification of a component.

Figure 4 shows that, in this comparison, the two Region Based Object Detectors gen-
erally perform significantly better than the Single Shot Object Detectors - both in terms
of the correct detections and their share of the total detections. It is also noticeable that
for the Single Shot Object Detectors, the size of the input data also appears to have
an effect on the comparison point on the result. However, there is a clear difference to
the previous comparison of the required training durations: While the training duration
increased uniformly with increasing size of the images with the Single Shot Object De-
tectors, such a uniform observation cannot be made with the accuracy, concerning the
relation to the input data sizes. While SSD Mobilenet V2 achieves good results with an
input data size of 512x512 pixels, SSD Mobilenet V1 delivers the worst result of this com-
parison for the same input data size (regarding the number of correct detections as well
as their share of the total detections). With an input data size of 300x300 pixels, however,
the result improves with SSD Mobilenet V1, while the change to a smaller input data size
has a deteriorating effect on the result with SSD Mobilenet V2. The best result of this
comparison - judging by the absolute values - was achieved by Faster R-CNN Inception
V2. However, in terms of the proportion of correct detections in the total detections, the
Region Based Object Detector is two percentage points behind RFCN Resnet 101, also
a Region Based Object Detector.
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Fig. 4. The accuracy of the CNNs we are looking at.

We were particularly interested in how neural networks would react to particularly
similar, small objects. Therefore, we decided to investigate the behavior of neural net-
works within the comparison using an example to illustrate the behavior of the three
very similar objects. Figure 5 shows the selected components for the experiment.
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For each of these three components we examined how often it was correctly detected
and classified by the compared neural networks and how often the network misclassified it
with which of the similar components. The first and the second component was detected
in nearly all cases by both region based approaches. The classification by Inception-v2
and Resnet-101 failed in about one third of images. The SSD networks detected the
object in just one of twenty cases but Mobilenet classified this correct.

It has been surprising, that the results for the third component looks very different
to the others (see Fig. 6). SSD Mobilenet V1 correctly identified the component in seven
of ten images and did not produce any detections that could be interpreted as misclas-
sifications with one of the similar components. SSD Mobilenet V2 did not detect any of
the three components, as in the two previous investigations. The results of the two region
based object detectors are rather moderate. Faster R-CNN Inception V2 has detected
the correct component in four of ten images, but still five misclassifications with the
other two components. RFCN Resnet101 has caused many misclassifications with the
other two components. Only two of ten images were correctly detected but it had six
misclassifications with the similar components.

An other important aspect of the study is the speed, or rather the speed at which the
neural networks can detect objects, especially with regard to later use at the assembly
table. For the comparison of the speeds on the one hand the data of the GitHub repository
of the TensorFlow Object Detection API for the individual neural nets were used, on the
other hand the actual speeds of the neural nets within this project were measured. It
becomes clear that the speeds measured in the project are clearly below the achievable
speeds that are mentioned in the GitHub repository of the TensorFlow Object-Detection
API. On the other hand, the differences between the speeds of the Region Based Object
Detectors and the Single Shot Object Detectors in the project are far less drastic than
expected.

6 Conclusions

We have created a training dataset with small, partly very similar components. With
this we have trained four common deep neural networks. In addition to the training
times, we examined the accuracy and the recognition time with general evaluation data.
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In addition, we examined the results for ten images each of three very similar and small
components.

None of the networks we trained produced suitable results for our scenario. Never-
theless, we were able to gain some important insights from the results. At the moment,
the runtime is not yet suitable for our scenario, but it is also not far from the minimum
requirements, so that these can easily be achieved with smaller optimizations and better
hardware. It was also important to realize that there are no serious runtime differences
between the different network architectures.

The two region based approaches delivered significantly better results than the SSD
approaches. However, the results of the detection of the third small component suggest
that Mobilenet in combination with a faster R-CNN could possibly deliver even better
results. Longer training and training data better adapted to the intended use could also
significantly improve the results of the object detectors.
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