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Abstract. Workpieces for dedicated purposes must be composed of materials
which have certain properties. The latter are determined by the compositional
structure of the material. In this paper, we present the scientific approach of
our current DFG funded project Tailored material properties through microstruc-
tural optimization: Machine Learning Methods for the Modeling and Inversion of
Structure-property relationships and their application to sheet metals. The project
proposes a methodology to automatically find an optimal sequence of processing
steps which produce a material structure that bears the desired properties. The
overall task is split in two steps: First find a mapping which delivers a set of struc-
tures with given properties and second, find an optimal process path to reach one
of these structures with least effort. The first step is achieved by machine learn-
ing the generalized mapping of structures to properties in a supervised fashion,
and then inverting this relation with methods delivering a set of goal structure
solutions. The second step is performed via reinforcement learning of optimal
paths by finding the processing sequence which leads to the best reachable goal
structure. The paper considers steel processing as an example, where the micro-
structure is represented by Orientation Density Functions and elastic and plastic
material target properties are considered. The paper shows the inversion of the
learned structure-property mapping by means of Genetic Algorithms. The search
for structures is thereby regularized by a loss term representing the deviation from
process-feasible structures. It is shown how reinforcement learning is used to find
deformation action sequences in order to reach the given goal structures, which
finally lead to the required properties.
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1 Introduction

The derivation of processing control actions to produce materials with certain, desired
properties is the ”inverse problem” of the causal chain ” process control” - ”microstructure
instantiation” - "material properties”. The main goal of our current project is the creation
of a new basis for the solution of this problem by using modern approaches from machine
learning and optimization.

The inversion will be composed of two explicitly separated parts: ”Inverse Structure-
Property-Mapping” (SPM) and ”microstructure evolution optimization”. The focus of
the project lies on the investigation and development of methods which allow an in-
version of the structure-property-relations of materials relevant in the industry. This
inversion is the basis for the design of microstructures and for the optimal control of the
related production processes. Another goal is the development of optimal control meth-
ods yielding exactly those structures which have the desired properties. The developed
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methods will be applied to sheet metals within the frame of the project as a proof of con-
cept. The goals include the development of methods for inverting technologically relevant
”Structure-Property-Mappings” and methods for efficient microstructure representation
by supervised and unsupervised machine learning. Adaptive processing path-optimization
methods, based on reinforcement learning, will be developed for adaptive optimal control
of manufacturing processes.

We expect that the results of the project will lead to an increasing insight into techno-
logically relevant process-structure-property-relationships of materials. The instruments
resulting from the project will also promote the economically efficient development of
new materials and process controls.

2 Related Work

In general, approaches to microstructure design make high demands on the mathematical
description of microstructures, on the selection and presentation of suitable features, and
on the determination of structure-property relationships. For example, the increasingly
advanced methods in these areas enable Microstructure Sensitive Design (MSD), which
is introduced in [1] and [2] and described in detail in [3].

The relationship between structures and properties descriptors can be abstracted
from the concrete data by regression in the form of a Structure-Property-Mapping. The
idea of modeling a Structure-Property-Mapping by means of regression and in particular
using artificial neural networks was intensively pursued in the 1990s [4] and is still used
today. The approach and related methods presented in [5] always consist of a Structure-
Property-Mapping and an optimizer (in [5] Genetic Algorithms) whose objective function
represents the desired properties.

The inversion of the SPM can be alternatively reached via Generative Models. In
contrast to discriminative models (e.g. SPM), which are used to map conditional de-
pendencies between data (e.g. classification or regression), generative models map the
composite probabilities of the variables and can thus be used to generate new data from
the assumed population. Established, generative methods are for example Mixture Mod-
els [6], Hidden Markov Models [7] and in the field of artificial neural networks Restricted
Boltzmann Machines [8]. In the field of deep learning, generative models, in particular
generative adversarial networks [9], are currently being researched and successfully ap-
plied in the context of image processing. Conditional Generative Models can generalize
the probability of occurrence of structural features under given material properties. In
this way, if desired, any number of microstructures could be generated.

Based on the work on the SPM, the process path optimization in the context of the
MSD is treated depending on the material properties. For this purpose, the process is
regarded as a sequence of structure-changing process operations which correspond to ele-
mentary processing steps. Shaffer et al. [10] construct a so called tezture evolution network
based on process simulation samples, to represent the process. The texture evolution net-
work can be considered as a graph with structures as vertices, connected by elementary
processing steps as edges. The structure vertices are points in the structure-space and
are mapped to the property-space by using the SPM for property driven process path
optimization. In [11] one-step deformation processes are optimized to reach the most
reachable element of a texture-set from the inverse SPM. Processes are represented by
so called process planes, principal component analysis (PCA) projections of microstruc-
tures reachable by the process. The optimization then is conducted by searching for the
process plane which best represents one of the texture-set elements. In [12], a generic
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ontology based semantic system for processing path hypothesis generation (MATCALO)
is proposed and showcased.

3 Research Concept

3.1 Inverse Structure-Property-Mapping (SPM)

The required mapping of the structures to the properties is modeled based on data from
simulations. The simulations are based on Taylor models. The structures are represented
using textures in the form of orientation density functions (ODF), from which the prop-
erties are calculated. In the investigations, elastic and plastic properties are considered in
particular. Structural features are extracted from the ODF for a more compact descrip-
tion. The project uses spectral methods such as generalized spherical harmonics (GSH) to
approximate the ODF. As an alternative representation we investigate the discretization
in the orientation-space, where the orientation density is represented by a histogram.

The solution of the inverse problem consists of a Structure-Property-Mapping and
an optimizer: As [4] described, the SPM is modeled by regression using artificial neural
networks. In this investigation, we use a multilayer perceptron.

Differential evolution (DE) is used for the optimization problem. DE is an evolutionary
algorithm developed by Rainer Storn and Kenneth Price [13]. Tt is a optimization method,
which repeatedly improves a candidate solution set under consideration of a given quality
measure over a continuous domain. The DE algorithm optimizes a problem by taking a
population of candidate solutions and generating new candidate solutions (structures) by
mutation and recombination existing ones. The candidate solution with the best fitness is
considered for further processing. So, for the generated structures the reached properties
are determined using the SPM.

The fitness F is composed of two terms: The property loss Lp, which expresses, how
close the property of a candidate is to the target property, and the structure loss Ls,
which represents the degree of feasibility of the candidate structure in the process

F (5,8, 00, 0a) = Lp(pr, pa) + Ls(5,5), (1)

The property loss is the mean squared error (MSE) between the reached properties
pr € P, and the desired properties pg € pg:

LN
Lp(prpa) = + > (pri — pas)® (2)

=1

Considering the goal that the genetic algorithm generates reachable structures, a
neural network is formed which functions as an anomaly detector. The data basis of this
neural network are structures that can be reached by a process. The goal of anomaly
detection is to exclude unreachable structures. The anomaly detection is implemented
using an autoencoder [14]. This is a neural network (see Fig. 1) which consists of the
following two parts: the encoder and the decoder. The encoder converts the input data
to an embedding space. The decoder converts the embedding space as close as possible
to the original data. Due to the reduction to an embedding space, the autoencoder uses
data compression and extracts relevant features. The cost function for the structures is a
distance function in the ODF-space, which penalizes the network if it produces outputs
that differ from the input. The cost function is also known as the reconstruction loss:
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with s; € § as the original structures, §; € 5 as the reconstructed structures and \ =
0.001 to avoid division by zero.
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Fig. 1. Autoencoder for determining the structure loss

When using the anomaly detection, the autoencoder determines a high reconstruction
loss if the input data are structures that are very different from the reachable structures.
The overall approach is shown in Fig. 2 and consists of the following steps:

1. The genetic algorithm generates structures.

2. The SPM determines the reached properties of the generated structures.

3. The structure loss Ls is determined by the reconstruction loss of the anomaly detector
for the generated structures with respect to the reachable structures.

4. The property loss Lp is determined by the MSE of the reached properties and the
desired properties.

5. The fitness is calculated as the sum of the structure loss Ls and the property loss
Lrp.

The structures, resulting from the described approach form the basis for optimal
process control.

3.2 Texture Evolution Optimization

Due to the forward mapping, the process evolution optimization based on texture evo-
lution networks ([10]) is restricted to a-priori sampled process paths. [11] relies on lin-
earization assumptions and is applicable to short process sequences only. [12] relies on
a-priori learned process models in the form of regression trees and is also applicable to
relatively short process sequences only.
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Fig. 2. Overview of our approach to find reachable structures with desired properties

As an adaptive alternative for texture evolution optimization, that can be trained to
find process-paths of arbitrary length, we propose methods from reinforcement learning.
For desired material properties pj. The inverted SPM determines a set of goal micro-
structures s; € GG, which are very likely reachable by the considered deformation process.
The texture evolution optimization objective is then to find the shortest process path P*
starting from a given structure sg, and leading close to one of the structures from G.

P* = argmin |P|: E(so,P) € G-, (4)

where P = (ag)r—o,... x; K < T is a path of process actions a, T is the maximum
allowed process length. The mapping E(s, P) = s delivers the resulting structure, when
applying P to the structure s. Here, for the sake of simplicity, we assume the process to
be deterministic, although the reinforcement learning methods we use are not restricted
to deterministic processes. G, is a neighbourhood of GG, the union of all open balls with
radius 7 and center points from G.

To solve the optimization problem by reinforcement learning approaches, it must be
reformulated as markov decision process (MDP), which is defined by the tuple (S, A, P, R).
In our case S is the space of structures 5, A is the parameter-space of the deformation
process, containing process actions a, P : S x A — S is the transition function of the
deformation process, which we assume to be deterministic. R, : S x A — R is a goal-
specific reward function. The objective of the reinforcement learning agent is then to
find the optimal goal-specific policy 7} (s;) = a; that maximizes the discounted future
goal-specific reward

K
Vo(s) = Y 7" " Ry(sk, ar), (5)
=t

where 7 € [0, 1] discounts early attained rewards, the policy m,(sy) determines aj, and
the transition function P(sg,ax) determines Sg1.
For a distance function d in the structure space, the binary reward function
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Ry (s,a) — {1, if d(P(s,a),g) <T (©)

0, otherwise

if maximized, leads to an optimal policy 7 that yields the shortest path to g from
every s for v < 1. Moreover, if V, is given for every microstructure from G, P from eq.
4 is identical with the application of the policy 7}, where ( = arg max,[Vy].

7, can be approached by methods from reinforcement learning. Value-based reinforce-
ment learning is doing so by learning expected discounted future reward functions [15].
One of these functions is the so called value-function V. In the case of a deterministic
MDP and for a given g, this expectation value function reduces to V, from eq. 4 and ¢
can be extracted if V is learned for every g from G. For doing so, a generalized form of
expectation value functions can be learned as it is done e.g. in [16].

This exemplary MDP formulation shows how reinforcement learning can be used
for texture evolution optimization tasks. The optimization thereby is operating in the
space of microstructures and does not rely on a-priori microstructure samples. When
using off-policy reinforcement learning algorithms and due to the generalization over
goal-microstructures, the functions learned while solving a specific optimization task can
be easily transferred to new optimization tasks (i.e. different desired properties or even

a different property space).
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