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Abstract. Neurosurgical procedures are associated with great challenges for the
surgeon since a high degree of precision is required. Operations are performed
within a limited space and often concealed structures are not visible to the sur-
geon. A system is proposed that integrates augmented reality into a digital oper-
ating room. The basis for this is an understanding of the scene and the integration
into the surgical workflow. In a first step a two-stage process is implemented to
detect the patient on the operating table with high precision. Further a solution is
presented to semantically segment the surgical scene to detect and track medical
instruments. For better understanding of the situation in the operation room the
medical staff is tracked with OpenPose. These solutions build the base for a pre-
cise and robust integration of augmented reality into the digital operating room.
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1 Introduction

Computer-assisted technologies in medical interventions are intended to support the sur-
geon during treatment and improve the outcome for the patient. One possibility is to
augment reality with additional information that would otherwise not be perceptible to
the surgeon. In medical applications, it is particularly important that demanding spatial
and temporal conditions are adhered to. Challenges in augmenting the operating room
are the correct placement of holograms in the real world, and thus, the precise registra-
tion of multiple coordinate frames to each other, the exact scaling of holograms, and the
performance capacity of processing and rendering systems.

In general, two different scenarios can be distinguished. First, applications exist, in
which a placement of holograms with an accuracy of 1 cm and above are sufficient. These
are mainly applications where a person needs a three-dimensional view of data. An ex-
ample in the medical field may be the visualization of patient data, e.g. to understand
and analyse the anatomy of a patient, for diagnosis or surgical planning. The correct
visualization of these data can be of great benefit to the surgeon. Often only 2D patient
data is available, such as CT or MRI scans. The availability of 3D representations depend
strongly on the field of application. In neurosurgery 3D views are available but often not
extensively utilized due to their limited informative value. Additionally computer mon-
itors are a big limitation, because the data can not be visualized in real world scale.
Further application areas are the translation of known user interfaces into augmented
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Fig. 1. A neurosurgeon performing a ventricular puncture wearing a HoloLens.

reality (AR) space. The benefit here is that a surgeon refrains from touching anything,
but can interact with the interface in space using hand or voice gestures. Applications
visualizing patient data, such as CT scans, only require a rough positioning of the image
or holograms in the operation room (OR). Thus, the surgeon can conveniently place the
application freely in space. The main requirement is then to keep the holograms in a
constant position. Therefore, the internal tracking of the AR device is sufficient to hold
the holograms at a fixed position in space. The second scenario covers all applications, in
which an exact registration of holograms to the real world is required, in particular with
a precision below 1 cm. These scenarios are more demanding, especially when holograms
must be placed precisely over real patient anatomy. To achieve this, patient tracking is
essential to determine position and to follow patient movements. The system therefore
needs to track the patient and adjust the visualization to the current situation. Further-
more, it is necessary to track and augment surgical instruments and other objects in the
operating room. The augmentation needs to be visualized at the correct spatial position
and time constraints need to be fulfilled. Therefore, the AR system needs to be embedded
into the surgical workflow and react to it. To achieve these goals modern state of the art
machine learning algorithms are required. However, the computing power on available
AR devices is often not yet sufficient for sophisticated machine learning algorithms. One
way to overcome this shortcoming is the integration of the AR system into a distributed
system with higher capabilities, such as the digital operating theatre OP:Sense (see Fig.
2).

In this work an augmented reality system HoloMed [4] (see Fig. 1) is integrated into
the surgical research platform for robot assisted surgery OP:Sense [5]. The objective is
to enable high-quality and patient-safe neurosurgical procedures in order to increase the
surgical outcome by providing surgeons with an assistance system that supports them
in cognitively demanding operations. The physician’s perception limits are extended by
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the AR system, which bases on supporting intelligent machine learning algorithms. AR
glasses allow the neurosurgeon to perceive the internal structures of the patient’s brain.
The complete system is demonstrated by applying this methodology to the ventricular
puncture of the human brain, one of the most frequently performed procedures in neu-
rosurgery. The ventricle system has an elongated shape with a width of 1-2 ¢m and is
located in a depth of 4 c¢m inside the human head. Patient models are generated fast
(< 2s) from CT-data [3], which are superimposed over the patient during operation and
serve as a navigation aid for the surgeon. In this work the expanded system architecture is
presented to overcome some limitations of the original system where all information were
processed on the Microsoft HoloLens, which lead to performance deficits. To overcome
these shortcomings the HoloMed project was integrated into OP:Sense for additional
sensing and computing power.

2 Material and Methods

To achieve integration of AR into the operation room and the surgical workflows, the
patient, the instruments and the medical staff need to be tracked. To track the patient, a
marker system is fixated on the patient head and registration from the marker system to
the patient is determined. A two-stage process was implemented for this purpose. First
the rough position of the patient’s head is determined on the OR table by applying a
YOLO v3 net to reduce the search space. Then a robot with a mounted RGB-D sensor
is used to scan the acquired area and build a point cloud of the same. To determine the
patient’s head in space as precisely as possible a two-step surface matching approach
is utilized. During recording, the markers are also tracked. With known position of the
patient and the markers, the registration matrix can be calculated. For the ventricular
puncture a solution is proposed to track the puncture catheter to determine the depth of
insertion into the human brain. By tracking the medical staff the system is able to react
to the current situation, e.g. if an instrument is passed. In the following the solutions are
described in detail.

2.1 Experimental Setup

Our digital operating room OP:Sense (illustrated in Fig. 2a) consists of an OR table with
two robots attached to it, a Kuka LWR4 and a Franka Panda lightweight robot. Several
sensors are integrated into the setup on the ceiling rack: an ARTRRACK 2 system to track
retroreflective markers consisting of six IR cameras and four Microsoft Kinect sensors
(shown in Fig. 2b). Any objects can be tagged with markers to track them, provided that
marker-to-instrument registration is available. Robot and operating table can be tracked
in the room via ART markers. The Microsoft Kinect sensors provide a RGB-D stream of
the operation area. Intel RealSense D415 and D435 cameras can additionally be placed
inside the OR or can be mounted on the robots, to capture a defined near-field area. A
patient phantom head from Synbone and a custom-build phantom skull were used during
experiments. A Microsoft HoloLens is used to visualize AR to the surgeon. It employs the
Unity 3D graphics engine to visualize the holographic scene. Patient tracking is provided
through two different marker systems: 1) the Aruco library in combination with OpenCV
and 2) the Vuforia library. OP:Sense is based on the Robot Operating System (ROS),
which is a middleware for robotic platforms, consisting of a set of software libraries and
tools. Core components are so-called nodes connecting all system components with each
other.
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Fig. 2. a) OP:Sense system setup. b) Sensor setup with six ARTTRACK 2 IR cameras (red 1)
and four Microsoft Kinect sensors (blue 2).

2.2 Patient Detection

To detect the patient’s head, the coarse position is first determined with the YOLO v3
CNN [6], performed on the Kinect RGB image streams. The position in 3D is determined
through the depth stream of the sensors. The OR table and the robots are tracked with
retroreflective markers by the ARTTRACK system. This step reduces the spatial search
area for fine adjustment. The Franka Panda has an attached Intel RealSense RGB-D
camera as depicted in Fig. 3.

Fig. 3. Franka Panda with attached RGB-D sensor.

The precise determination of the position is performed on the depth data with surface
matching. The robot scans the area of the coarsely determined position of the patient’s
head. A combined surface matching approach with feature-based and ICP matching was
implemented. The process to perform the surface matching is depicted in Fig. 4. In clinical
reality, a CT scan of the patient head is always performed prior to a ventricular puncture
for diagnosis, such that we can safely assume the availability of CT data. A process
to segment the patient models from CT data was proposed by Kunz et al. in [3]. The
algorithm processes the CT data extremely fast in under two seconds. The data format
is ".nrrd’, a volume model format, which can easily be converted into surface models or
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point clouds. The point cloud of the patient’s head CT scan is the reference model that
needs to be found in OR space. The second point cloud is recorded from the RealSense
depth stream mounted on the Panda robot by scanning the previously determined rough
position of the patient head. All points are recorded in world coordinate space. The
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Fig. 4. Surface matching process.

search space is further restricted with a segmentation step by filtering out points that
are located on the OR table. Additionally, manual changes can be made by the surgeon.
In a performance optimization, the resolution of the point clouds is reduced to decrease
processing time without loosing too much accuracy. The normals of both point clouds
generated from CT data and from the recorded RealSense depth stream are subsequently
calculated and harmonised. During this step, the harmonisation is especially important
as the normals are often misaligned. This misalignment occurs because the CT data is a
combination of several individual scans. For alignment of all normals, a point inside the
patient’s head is chosen manually as a reference point, followed by orienting all normals
in the direction of this point and subsequently inverting all normals to the outside of the
head (see Fig. 5).

After the preprocessing steps, the first surface fitting step is executed. It is based on
the Initial alignment algorithm proposed by Rusu et al. [8]. An implementation within
the point cloud library (PCL) is used. Therefore fast point feature histograms need to
be calculated as a preprocessing step. In the last step an iterative closest point (ICP)
algorithm is used to refine the surface matching result. After the two point clouds have
been aligned to each other the inverse transformation matrix can be calculated to get
the correct transformation from marker system to patient model coordinate space.

2.3 Catheter Tracking

As outlined in Fig. 6, catheter tracking was implemented based on semantic segmentation
using a Full-Resolution Residual Network (FRRN) [7]. After the semantic segmentation
of the RGB stream of the Kinect cameras, the image is fused with the depth stream
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Fig. 5. Before (left) and after (right) harmonisation of wrongly oriented normals.

to determine the voxels in the point cloud belonging to the catheter. As a further step
a density based clustering approach [2] is performed on the chosen voxels. This is due
to noise especially on the edges of the instrument voxels in the point cloud. Based on
the found clusters an estimation of the three dimensional structure of the catheter is
performed. For this purpose, a narrow cylinder with variable length is constructed. The
length is changed accordingly to the semantic segmentation and the clustered voxels of
the point cloud. The approach is applicable to identify a variety of instruments.
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Fig. 6. Process to track the catheter using a RGB-D sensor.

2.4 Tracking of Medical Staff

The OpenPose [1] library is used to track key points on the bodies of the medical staff.
Available ROS nodes have been modified to integrate OpenPose in the OP:Sense ROS
environment. The architecture is outlined in Fig. 7.

3 Results

In this chapter the results of the patient, catheter and medical staff tracking are de-
scribed. The approach to find the coarse position of a patient’s head was performed on a
phantom head placed on the OR table within OP:Sense. Multiple scenarios with chang-
ing illumination and occlusion conditions were recorded. The results are depicted in Fig.
8 and the evaluation results are depicted in Table 1.
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Fig. 7. Integration of the OpenPose library into the ROS environment of OP:Sense.

Fig. 8. Coarse determination of the patient’s head on the OR table with YOLO v3.

Table 1. Evaluation results for the phantom search with YOLO v3.

Precision|Recall|F1-Score|average loU| mAP
Normal OR conditions 92% | 99% | 95% 67.59% 190.35%
Occlusion 99% | 93% | 96% 75.77% 190.86%
Strong Illumination 62% | 66% | 64% 41.01% |62.23%
Illumination and Occlusion| 65% 51% | 57% 41.83% |45.62%

Precision detection of the patient was performed with a two-stage surface matching
approach. Different point cloud resolutions were tested with regard to runtime behaviour.
Voxel grid edge sizes of 6, 4 and 3 mm have been tested, with a higher edge size cor-
responding to a smaller point cloud. The matching results of the two point clouds were
analyzed manually. An average accuracy of 4.7 mm was found with an accuracy range

between 3.0 and 7.0 mm.

In the first stage of the surface matching, the two point clouds are coarsely aligned as
depicted in Fig. 9. In the second step ICP is used for fine adjustment. A two-stage process
was implemented as ICP requires a good initial alignment of the two point clouds.
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Table 2. Evaluation results of the two-step surface matching.

Voxel Grid| ., . Points after Adjustment|Processing Time|Mean Accuracy
. Points . . .
Size (mm) of Resolution (in minutes) (mm)
6 17418 1293 1.98 6.45
4 17418 2706 7.57 3.52
3 17418 4405 17.87 4.12
4 47530 2860 7.53 3.94
4 49917 2774 7.71 3.0
4 30521 3035 8,09 7.0

Fig. 9. Results of the two-stage surface matching. Left: After Initial Alignment, Right: After
ICP.

For catheter tracking a precision of the semantic segmentation between 47% and 84%
is reached (see Table 3). Tracking of instruments, especially neurosurgical catheters, are
challenging due to their thin structure and non-rigid shape. Detailed results on catheter
tracking have been presented in [7].

Table 3. Evaluation results for semantic segmentation [7].

Dataset Normal Normal Catheter |Catheter|Catheter Bricht B;ihﬁé
conditions 1|conditions 2|horizontal| vertical |diagonal shh\ b

covered
Precision 84.1% 64.0% 771% 47.7% | 81.0% |59.0% | 72.9%
Recall 58.7% 61.9% 51.2% 19.2% | 31.0% [15.4%| 43.1%

The 3D estimation of the catheter is shown in Fig. 10. The catheter was moved in
front of the camera and the 3D reconstruction was recorded simultaneously. Over a long
period of the recording over 90% of the catheter are tracked correctly. In some situations
this drops to under 50% or lower.
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Fig. 10. Results of the 3D estimation of the catheter.

The tracking of medical personnel is shown in Fig. 11. The different body parts and
joint positions are determined, e.g. the head, eyes, shoulders, elbows, etc. The library
yielded very good results as described in [1]. We reached a performance of 21 frames per
second on a workstation (Intel i7-9700k, GeForce 1080 Ti) processing 1 stream.

"L__,r

Fig. 11. Results of the medical staff tracking.
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4 Discussion

As shown in the evaluation, our approach succeeds in detecting the patient in an auto-
mated two-stage process with an accuracy between 3 and 7 mm. The coarse position is
determined by using a YOLO v3 net. The results under normal OR conditions are very
satisfying. The solution performance drops strongly under bright illumination conditions.
This is due to large flares that occur on the phantom as it is made of plastic or silicone.
However, these effects do not occur on human skin. The advantage of our system is that
the detection is performed on all four Kinect RGB streams enable different views on the
operation area. Unfavourable illumination conditions normally don’t occur on all of these
streams. Therefore a robust detection is still possible. In the future the datasets will be
expanded with samples with strong illumination conditions.

The following surface matching of the head yields good results and a robust and pre-
cise detection of the patient. Most important is a good preprocessing of the CT data and
the recorded point cloud of the search area, as described in the methods. The algorithm
does not manage to find a result if there are larger holes in the point clouds or if the
normals are not calculated correctly. Additionally, challenges that have to be considered
include skin deformities and noisy CT data. The silicone skin is not fixed to the skull
(as human skin is), which leads to changes in position, some of which are greater than
1 cm. Also the processing time of 7 minutes is quite long and must be optimized in the
future. The processing time may be shortened by reducing the size of the point clouds.
However, in this case the matching results may also become worse.

Catheter tracking [7] yielded good results, despite the challenging task of segmenting a
very thin ( 2.5 mm) and deformable object. Additionally, a 3D estimation of the catheter
was implemented. The results showed that in many cases over 90% of the catheter can be
estimated correctly. However, these results strongly depend on the orientation and the
quality of the depth stream. Using higher quality sensors could improve the detection
results.

For tracking of the medical staff OpenPose as a ready-to-use people detection algo-
rithm was used and integrated into ROS. The library produces very good results, despite
medical staff wearing surgical clothing.

5 Conclusion

In this work the integration of augmented reality into the digital operating room OP:Sense
is demonstrated. This makes it possible to expand the capabilities of current AR glasses.
The system can determine the precise patient’s position by implementing a two-stage
process. First a YOLO v3 net is used to coarsly detect the patient to reduce the search
area. In a second subsequent step a two-stage surface matching process is implemented
for refined detection. This approach allows for precise location of the patient’s head for
later tracking.

Further, a FRNN-based solution to track the surgical instruments in the OR was im-
plemented and demonstrated on a thin neurosurgical catheter for ventricular punctures.
Additionally, OpenPose was integrated into the digital OR to track the surgical person-
nel. The presented solution will enable the system to react to the current situation in the
operating room and is the base for an integration into the surgical workflow.
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