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Abstract.  

Extensive research and development has been conducted in the field of AI-powered analysis 
of medical CT data during the past years – with significant progress. Although voxel data 
from industrial parts differ from medical data in the contrast level and the resolution, the 
medical DL approach is promising. Therefore, the aim of this work is exploring and 
developing neural network models for detecting defects in industrial CT data. Network 
architectures, successfully applied to medical CT data, were investigated and derivates were 
developed. Different neural network models were trained utilising a mixture of synthetic 
data and real data. The evaluation showed very good results for a modified U-Net neural 
network. 
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1 Introduction 

Quality assurance is one of the key issues for modern production technologies. Especially new 
production methods like additive manufacturing and composite materials require high resolution 
3D quality assurance methods. Computed tomography (CT) is one of the most promising 
technologies to acquire material and geometry data non-destructively at the same time. 
 
With CT it is possible to digitalize subjects in 3D, also allowing to visualize their inner structure. 
A 3D-CT scanner produces voxel data, comprising of volumetric pixels that correlate with 
material properties. The voxel value (grey value) is approximately proportional to the material 
density. Nowadays it is still common to analyse the data by manually inspecting the voxel data 
set, searching for and manually annotating defects. The drawback is that for high-resolution CT 
data, this process it very time consuming and the result is operator-dependent. Therefore, there 
is a high motivation to establish automatic defect detection methods.  
 
There are established methods for automatic defect detection using algorithmic approaches. 
However, these methods show a low reliability in several practical applications. At this point 
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artificial neural networks come into play that have been already implemented successfully in 
medical applications [1]. The most common networks, developed for medical data segmentation, 
are by Ronneberger et al., the U-Net [2] and by Milletari et al., the V-Net [3] and their derivates. 
These networks are widely used for segmentation tasks. Fuchs et al. describes three different 
ways of analysing industrial CT Data [4]. One of these contains a 3D-CNN. This CNN is based 
on the U-Net architecture and is shown in their previous paper [5]. The authors enhance and 
combine the U-Net and V-Net architecture to build a new network for examination of 3D 
volumes. In contrast, we investigate in our work how the networks introduced by Ronneberger 
et al. and Milletari et al. perform in industrial environments. Furthermore, we investigate if 
derivates of these architectures are able to identify small features in industrial CT data. 

2 Industrial vs. medical CT data 

In industrial CT systems, not only in the hardware design but also in the resulting 3D imaging 
data differs from medical CT systems. Voxel data from industrial parts differ from medical data 
in the contrast level and the resolution. State-of-the-art industrial CT scanner produce one to two 
order of magnitude larger data sets compared to medical CT systems. The corresponding 
resolution is necessary to resolve small defects. Medical CT scanners are optimised for a low x-
ray dose for the patient, the energy of x-ray photons are typically up to 150 keV, industrial 
scanner typically use energies up to 450 KeV. In combination with the difference of the scan 
“object”, the datasets differ significantly in size and image content. 
 
To store volume data there are a lot of different file formats. Some of them are mainly used in 
medical applications like DICOM [6], NifTi1 or RAW. In industrial applications VGL3, RAW 
and TIFF4 are commonly used. Also depending on the format, it is possible to store the data slice 
wise or as a complete volume stack.  

3 CT data for training and evaluation 

Industrial CT data, as mentioned in previous section, has some differences to medical CT data. 
One aspect is the size of the features to be detected or learned by the neural network. Our target 
is to find defects in industrial parts. As an example, we analyse pores in casting parts. These 
features may be very small, down to 1 to 7 voxels in each dimension. Compared to the size of 
the complete data volume (typically larger than 512 x 512 x 512 voxel), the feature size is very 
small. The density difference between material and pores may be as low as 2% of the maximum 
grey value. Thus, it is difficult to annotate the data even for human experts. The availability of 
real industrial data of good quality, annotated by experts, is very low. Most companies don’t 
reveal their quality analysis data. Training a neural network with a small quantity of data is not 
possible. For medical applications, especially AI applications, there are several public datasets 
available. Yet these datasets are not always sufficient and researchers are creating synthetic 
medical data [7].  
 

1 Details available at: https://nifti.nimh.nih.gov/ - 20/03/12 
3 Details available at: https://www.volumegraphics.com/ - 20/03/12 
4 Details available at: https://kb.iu.edu/d/afjn - 20/03/12 
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Therefore, we decided to create synthetic industrial CT data. Another important reason for 
synthetic data is the quality of annotations done by human experts. The consistency of results is 
not given for different experts. Fuchs et al. have shown that training on synthetic data and 
predicting on real data lead to good results [4]. However, synthetic data may not reflect all 
properties of real data. Some of the properties are not obvious, which may lead to ignoring some 
varieties in the data. In order to achieve a high associability, we use a large numbers of synthetic 
data mixed with a small number of real data. To achieve this, we developed an algorithm which 
generates large amounts of data, containing a large variation of aspects, needed to generalize a 
neural network. The variation includes material density, pore density, pore size, pore amount, 
pore shape and size of the part.  
 
There are some samples that could be learned easily, because the pores are clearly visible inside 
the material. However, some samples are more difficult to be learned, because the pores are 
nearly invisible. This allows us to generate data with a wide variety and hence the network can 
predict on different data. To train the neural networks, we can mix the real and synthetic data or 
use them separately. The real data was annotated manually by two operators.  
 
To create a dataset of this volume we sliced it into 64x64x64 blocks. Only the blocks with a 
mean density greater than 50% of the grayscale range are used, to avoid too much empty volumes 
in the training data. Another advantage of synthetic data is the class balance. We have two 
classes, where 0 corresponds to material and surrounding air and 1 for the defects. Because of 
the size of the defects there is a high imbalance between the classes. By generating data with 
more features than in the real data, we could reduce the imbalance. Reducing the size of the 
volume to 64x64x64 also leads to better balance between the size of defects compared to full 
volume. In Table 1details of our dataset for training, evaluation and testing are shown. The 
synthetic data will not be recombined to a larger volume as they represent separate small 
components or full material units. 

Table 1: Overview of used datasets. 
Name Description Resolution No. of 

samples 
No. of 

training 
samples 

No. of 
evaluation 

samples 

No. of test 
samples 

Gdata synthetic 64x64x64 7249 6198 688 363 

Rdata real  64x64x64 156 135 15 6 

Mdata mixed 64x64x64 7405 6334 703 368 
 
The following two slices of real data (Figure 1) and synthetic data (Figure 2) with annotated 
defects show the conformity between the data. 
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Figure 1: Sample slice of real data with size of 
64x64x64 voxel. 

Figure 2: Sample slice of synthetic data with size 
of 64x64x64 voxel. 

4 Hardware and software setup 

Deep learning (DL) consist of two phases: The training and its application. While DL models 
can be executed very fast, the training of the neural network can be very time-consuming, 
depending on several factors. One major factor is the hardware. The time consumed can be 
reduced by the factor of around ten when graphics cards (GPUs) are used. [8] To cache the 
training data, before it is given into the model, calculated on the GPU, a lot of random-access 
memory (RAM) is used [9] [10] [11]. Our system is built on a dual CPU hardware with 10 cores 
each running at 2.1 GHz and a Nvidia GPU Titan RTX5 with 24GB of VRAM and 64GB of 
regular RAM. All measurements in this work concerning training and execution time are related 
to this hardware setup. 
 
The operating system is Ubuntu 18.4LTS. Anaconda is used for python package management 
and deployment. The DL-Framework is Tensorflow6 2.1 and Keras as a submodule in Python7.    

5 Neural network architecture 

Based on the 3DU-Net [12] and 3DV-Net [3] architecture compared from Paichao et al. [13] we 
created modified versions which differ in number of layers and their hyperparameters. Due to 
the small size of our data, no patch division is necessary. Instead the training is performed on the 
full volumes. We actually do not use the Z-Net enhancement proposed in their paper. The input 
size, depending on our data, is defined to 64x64x64x1 with 1 dimension for channel. The 
incoming data will be normalized. As we have a binary segmentation task, our output activation 
is the sigmoid [14] function. Based on Paichao et al. [13] the convolutional layer of our 3DU-
Nets have a kernel size of (3, 3, 3) and the 3DV-Nets have a kernel size of (5, 5, 5). As 
convolution activation function we are using ELU [14] [15] and he_normal [16] as kernel 
initialization [17]. The ADAM optimisation method [18] [19] is used with a starting learning 

5 Product page: https://www.nvidia.com/de-at/titan/titan-rtx/ - 20/03/12 
6 Details available at: https://www.tensorflow.org/ - 20/03/12 
7 Details available at: https://keras.io/ - 20/03/12 
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rate of 0.0001, a decay factor of 0.1 and the loss function is the binary cross-entropy [20]. Figure 
3 shows a sample 3DU-Net architecture where downwards max pooling and upwards transposed 
convolution are used. Compared to Figure 4, the 3DV-Net, where we have a fully convolutional 
neural network, the descend is done with a (2, 2, 2) convolution and a stride of 2 and ascent with 
transposed convolution. It also has a layer level addition of the input of this level added to the 
last convolution output of the same level, as marked by the blue arrows. To adapt the shapes of 
the tensors for adding them, the down-convolution and the last convolution of the same level, 
have to have the same number of kernel filters. 

 
Figure 3: Sample U-Net architecture for building reference. 

 
Figure 4: Sample V-Net architecture for building reference. 

Our modified neural network differ in the levels of de-/ascending, the convolution filter kernel 
size and their hyperparameters, shown in Table 2. The convolutions on one level have the same 
number of filter kernel. After every down convolution the number of filters is multiplied by 2 
and on the way up divided by 2.  
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Table 2: Tested models and their base specifications. 

Architecture Starting 
Kernel 

Number 

Kernel Size Down/Up-
Levels 

Hyperparameter 

U-Net_small 16 (3, 3, 3) 3_BOTTOM_3 1,40 x106 

U-Net_large 16 (3, 3, 3) 5_BOTTOM_5 3,41 x107 

V-Net_small 16 (5, 5, 5) 3_BOTTOM_3 1,06 x107 

V-Net_large 16 (5, 5, 5) 5_BOTTOM_5 1,77 x108 

6 Training and evaluation of the neural networks 

The conditions of a training and a careful parameters selection is important. In Table 3 the 
training conditions fitted to our system and networks are shown. We are also taking into account 
that different network architectures and number of layers are better performing on different 
learning rates, batch size, etc.  

Table 3: Training conditions. 

Parameter Description Value 

Batchsize Number of sample per iteration 5 

Epochs Number of iterations of all samples 15-90 

Learning rate Factor for weight adjustment 0.001 

Shuffle data Shuffle data before loading in batches True 

Learning rate decay Reduction of learning rate when reaching plateau 0.1 
 

To evaluate our trained models, we are mainly focusing on the IoU metric, also called Jackard 
Index, which is the intersection over union. This metric is widely used for segmentation tasks 
and compares the intersection over union between the prediction and ground truth for each voxel. 
The value of IoU range between 0 and 1, whereas the loss values range between 0 and infinite. 
Therefore, the IoU is a much clearer indicator. An IoU close to 1 indicates a high intersection-
precision between the prediction and the groundtruth. Our networks where trained between 30 
and 90 epochs until no more improvement could be achieved. Both datasets consist of a similar 
number of samples, which means the epoch time is equivalent. One epoch took around 4 minutes. 

Figure 5 shows the loss determined based on the evaluation data. As described in Fehler! 
Verweisquelle konnte nicht gefunden werden., all models are trained on and evaluated against 
the synthetic dataset Gdata and on the mixed dataset Mdata. In general, the loss achieved by all 
models is higher on Mdata because the real data is harder to learn. A direct comparison between 
the models is only possible between models with the same architecture. The IoU metric shown 
in Figure 6. Here the evaluation is sorted based on the IoU metric. If we compare the loss of 
UNET-Mdata with UNET-Gdata, which are nearly the same for Mdata, with their corresponding 
IoU (UNET-Mdata (~0.8) and UNET-Gdata (~0.93)), we can see that a lower loss does not 
necessarily lead to higher IoU score. If only the loss and IoU are considered, the UNets tend to 
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be better than the VNets. As a conclusion, considering the IoU metric for model selection, the 
UNET-Gdata is the best performing model and VNET-Gdata the least performing. 

  

Figure 5: The evaluation loss determined based 
on the evaluation data sorted from lowest to 

highest. 

Figure 6: The evaluation IoU determined based 
on the evaluation data sorted from lowest to 

highest. 

 

After comparing the automatic evaluation, we show prediction samples of different models on 
real and synthetic data (Table 4). Rows 1 and 2 show the comparison between UNET-Gdata and 
VNET-Gdata, predicting on a synthetic test sample. The result of UNET-Gdata exactly hits the 
groundtruth, whereas the VNET-Gdata prediction has a 100% overlap to the groundtruth but 
with surrounding false positive segmentations. In row 3 and 4 both models predict the 
groundtruth plus some false positive segmentations in the close neighbourhood. In row 5 and 6 
the prediction results of the same two models on real data is shown, taking into account that both 
models are not trained on real data. UNET-Gdata delivers a good precision with some false 
positive segmentations in thegroundtruth area and one additional segmented defect. This shows 
that the model was able to find a defect which was missed by the expert. VNET-Gdata shows a 
very high number of false positive segmentations.  
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Table 4: Overview of predictions by different models on synthetic and real test samples. 

Model Data 
type 

Sample Groundtruth Prediction 

UNET-
Gdata 

synthetic 

   

VNET-
Gdata 

synthetic 

   

UNET-
Gdata 

synthetic 

   

VNET-
Gdata 

synthetic 

   

UNET-
Gdata 

real 

   

VNET-
Gdata 

real 

   

7 Conclusion 

In this paper, we have proposed a neural network to find defects in real and synthetic industrial 
CT volumes. We have shown that neural networks, developed for medical applications can be 
adapted to industrial applications. To achieve high accuracy, we used a large variety of features 
in our data. Based on the evaluation and manually reviewing random samples we have chosen 
the UNET architecture for further research. This model achieved great performance on our real 
and synthetic dataset. In summery this paper shows that the artificial intelligence and their neural 
networks will take an import enrichment in industrial issues. 
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