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Abstract.  

In this paper we present a machine learning pipeline developed specifically for the product 
group of alcoholic beverages with focus on the two segments wine and beer which 
constitute the major part of a retailer’s alcoholic beverages inventory. We focus on 
exploiting expert knowledge about the data domain to engineer features tailored to 
prediction of the important attribute gross weight. Experiments with data from a major retail 
company show that our proposed machine learning approach with feature enriched data 
achieves superior results which are more robust than those obtained by traditional heuristic 
approaches on the original data. In practical terms this is a step towards fully automated 
product data generation and maintenance reducing manual effort and thus costs for a retail 
company.  

 Keywords: Product Classification, Feature Engineering, Machine Learning 

1 Introduction 

Retail companies dealing in alcoholic beverages are faced with a constant flux of products. Apart 
from general product changes like modified bottle designs and sizes or new packaging units two 
factors are responsible for this development. The first is the natural wine cycle with new vintages 
arriving at the market and old ones cycling out each year. The second is the impact of the rapidly 
growing craft beer trend which has also motivated established breweries to add to their range. 
The management of the corresponding product data is a challenge for most retail companies. The 
reason lies in the large amount of data and its complexity. Data entry and maintenance processes 
are linked with considerable manual effort resulting in high data management costs. Product data 
attributes like dimensions, weights and supplier information are often entered manually into the 
data base and are often afflicted with errors. Another widely used source of product data is the 
import from commercial data pools. A means of checking the data thus acquired for plausibility 
is necessary. Sometimes product data is incomplete due to different reasons and a method to fill 
the missing values is required. All these possible product data errors lead to complications in the 
downstream automated purchase and logistics processes.  

We propose a machine learning model which involves domain specific knowledge and compare 
it a heuristic approach by applying both to real world data of a retail company. In this paper we 
address the problem of predicting the gross weight of product items in the merchandise category 
alcoholic beverages. To this end we introduce two levels of additional features. The first level 
consists of engineered features which can be determined by the basic features alone or by domain 
specific expert knowledge like which type of bottle is usually used for which grape variety. In 
the next step an advanced second level feature is computed from these first level features. Adding 
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these two levels of engineered features increases the prediction quality of the suggestion values 
we are looking for. The results emphasize the importance of careful feature engineering using 
expert knowledge about the data domain. 

2 Related Work 

Feature Engineering is the process of extracting features from the data in order to train a 
prediction model. It is a crucial step in the machine learning pipeline, because the quality of the 
prediction is based on the choice of features used to training. The majority of time and effort in 
building a machine learning pipeline is spent on data cleaning and feature engineering 
[Domingos 2012]. A first overview of basic feature engineering principles can be found in 
[Zheng 2018]. The main problem is the dependency of the feature choice on the data set and 
the prediction algorithm. What works best for one combination does not necessarily work for 
another. A systematic approach to feature engineering without expert knowledge about the data 
is given in [Heaton 2016]. The authors present a study whether different machine learning 
algorithms are able to synthesize engineered features on their own. As engineered features 
logarithms, ratios, powers and other simple mathematical functions of the original features are 
used. In [Anderson 2017] a framework for automated feature engineering is described. 

3 Data Set 

The data set is provided by a major German retail company and consists of 3659 beers and 10212 
wines. Each product is characterized by the seven features shown in table 1. The product name 
obeys only a generalized format. Depending on the user generating the product entry in the 
company data base, abbreviating style and other editing may vary. The product group is a 
company specific number which encodes the product category - dairy products, vegetables or 
soft drinks for example. In our case it allows a differentiation of the product into beer and wine. 
Additionally wines are grouped by country of origin and for Germany also into wine-growing 
regions. Note that the product group is no inherent feature like length, width, height and volume, 
but depends on the product classification system a company uses. The dimensions length, width, 
height and the volume derived by multiplicating them are given as float values. The feature 
(gross) weight, also given as a float value, is what we want to predict. 

3.1 Feature description 

Feature Type Unit Example 
Product name string - MW  PFUNGSTAED  EDEL  PILS  EXCLUSIV 
Product group int - 47114 
Length float mm 69.0 
Width float mm 69.0 
Height float mm 270.0 
Volume float ml 1285470.0 
Gross Weight float g 915.0 

 
Table. 1. Data set features, corresponding types, units and example 
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3.2 General Pre-Processing 

As is often the case with real world data, a pre-processing step has to be performed prior to the 
actual machine learning in order to reduce data errors and inconsistencies. For our data we first 
removed all articles missing one or more of the required attributes of table 1. Then all articles 
with dummy values were identified and discarded. Dummy values are often introduced due to 
internal process requirements but do not add any relevant information to the data. If for example 
the attribute weight has to be filled for an article during article generation in order to proceed to 
the next step but the actual value is not know, often a dummy value of 1 or 999 is entered. These 
values distort the prediction model when used as training data in the machine learning step. The 
product name is subjected to lower casing and substitution of special German characters like 
umlauts. Special symbolic characters like #,! or separators are also deleted. With this pre-
processing done the data is ready to be used for feature engineering. 

Following this formal data cleaning we perform an additional content-focused pre-processing. 
The feature weight is discretized by binning it with bin width 10g. Volume is likewise treated 
with bin size 10ml. This simplifies the value distribution without rendering it too coarse. All 
articles where length is not equal to width are removed, because in these cases there are no single 
items but packages of items. 

4 Feature Engineering 

Often the data at hand is not sufficient to train a meaningful prediction model. In these cases 
feature engineering is a promising option. Identifying and engineering new features depends 
heavily on expert knowledge of the application domain. The first level consists of engineered 
features which can be determined by the original features alone. In the next step advanced second 
level features are computed from these first level and the original features. 

For our data set the original features are product name and group as well as the dimensions 
length, width, height and volume. We see that the volume is computed in the most general way 
by multiplication of the dimensions. Geometrically this corresponds to all products being 
modelled as cuboids. Since angular beer or wine bottles are very much the exception in the real 
world, a sensible new feature would be a more appropriate modelling of the bottle shape. Since 
weight is closely correlated to volume, the better the volume estimate the better the weight 
estimate. To this end we propose four first level engineered features: capacity, wine bottle type, 
beer packaging type and beer bottle type which are in turn used to compute a second level 
engineered feature namely the packaging specific volume. Figure 1 shows all discussed features 
and their interdependencies. 

4.1 Capacity 

Let us have a closer look at the first level engineered features. The capacity of a beverage states 
the amount of liquid contained and is usually limited to a few discrete values. 0.33l and 0.5l are 
typical values for beer cans and bottles while wines are almost exclusively sold in 0.75l bottles 
and sometimes in 0.375l bottles. The capacity can be estimated from the given volume with 
sufficient certainty using appropriate threshold values. Outliers were removed from the data set. 
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Figure. 1. First and second level engineered features 

4.2 Beer packaging and bottle types 

There are three main beer packaging types in retail: cans, bottles and kegs. While kegs are mainly 
of interest to pubs and restaurants and are not considered in this paper, cans and bottles target 
the typical super market shopper and come in a greater variety. In our data set, the product name 
in case of beers is preceded by a prefix denoting whether the product is packaged in a can  or a 
bottle. Extracting the relevant information is done using regular expressions. Not, though, that 
the prefix is not always correct and needs to be checked against the dimensions. 

The shapes of cans are the same for all practical purposes, no matter the capacity. The only 
difference is in their wall thickness, which depends on the material, aluminium and tin foil  being 
the two common ones. The difference is weight is small and the actual material used is 
impossible to extract from the data. A further distinction for cans in different types like for beer 
and wine is therefore unnecessary. 

Regarding the German beer market, the five bottle types shown in figure 2 are pre-dominant: 
longneck, NRW, Euro, Steini and NRW-Vichy. While not conforming to a DIN (the DIN 6199 
Packmittel – Flaschen, Steinieform was withdrawn in 1997) standard anymore, the variations in 
length, width and height and weight are small. Therefore, bottles of the same type and brand may 
have different weights, even if they are sold in the same crate. Measurements for a crate of 18 
filled Steini bottles resulted in 20 different weight values. A tolerance of +/- 2% was observed. 
As a pre-processing step, the weights were therefore rounded to the nearest 10g. 

This holds true for all of the five bottle types in question. Since for beers there are no comparably 
meaningful reference points like color, grape or region of origin, the bottle type is determined 
by height and diameter using the minimum of the Euclidean distance to a set of idealized bottles 
with dimensions given in table 2. Bottles which were differing by more than 3% from these 
dimensions were removed from the data set. 
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Bottle type Capacity Height Diameter 
NRW 500 ml 260.0 67.0 
Euro 500 ml 230.0 70.6 
Longneck 500 ml 270.0 68.3 
Longneck 330 ml 238.0 60.0 
NRW-Vichy 330 ml 233.0 61.0 
Steini 330 ml 174.0 70.0 

 
Table. 2. Beer bottle types and corresponding typical dimensions 

The engineered feature beer packaging type assigns each article identified as beer by its product 
group to one of the classes bottle or can. The feature beer bottle type contains the most probably 
member of the five main beer bottle types.  Packages containing more than one bottle or can like 
crates or six packs are not considered in this paper and were removed from the data set. 

 

Figure 2. Beer bottle types, from left to right: Longneck, NRW, Euro, Steini, NRW-Vichy 

4.3 Wine packaging types 

Compared to beer the variety of commercially sold wine packagings is limited to bottles only. A 
corresponding packaging type attribute to distinguish between cans and bottles is not necessary. 
Again there are a few bottle types which are used for the majority of wines, namely Schlegel, 
Bordeaux and Burgunder (Figure 3). Deciding what product is filled in which bottle type is a 
question of domain knowledge. The original data set does not contain a corresponding feature. 
From the product group the country of origin and in the case of German wines the region can be 
determined via a mapping table. This depends on the type of product classification system the 
respective company uses and has not to be valid for all companies. Our data set uses a customer 
specific classification with focus on Germany. A more general one would be the Global Product 
Classification (GPC) standard for example. To determine wine growing regions in non-German 
countries like France the product name has to be analyzed using regular expressions. The type 
of grape is likewise to be deduced from the product name if possible. Using the country and 
specifically the region of origin and type of grape of the wine in question is the only way to 
assign a bottle type with acceptable certainty. There are countries and region in which a certain 
bottle type is used predominantly, sometimes also depending on the color of the wine. The 
Schlegel bottle, for example, is almost exclusively used for German and Alsatian white wines 
and almost nowhere else. Bordeaux and Burgunder bottles on the other hand are used throughout 
the world. Some countries like California or Chile use a mix of bottle types for their wines, which 
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poses an additional challenge. With expert knowledge one can assign regions and grape types to 
the different bottle types. As with beer bottles this categorization is by no means comprehensive 
or free of exceptions but serves as a first step.  
 

 
 

Figure 2. Wine bottle types, from left to right: Schlegel, Bordeaux, Burgunder 
 

4.4 Packaging type specific volume computation 

The standard volume computation by multiplying the product dimensions length, width and 
height is a rather coarse cuboid approximation to the real shape of alcoholic beverage 
packagings. Since the volume is intrinsically linked to the weight which we want to predict a 
packaging type specific volume computation is required for cans and especially bottles. 

The modelling of a can is straightforward using a cylinder with the given height ℎ and a diameter 
of the given width ݓ and length ݈. Thus the packaging type specific volume is: 

          ஼ܸ௔௡
஼ ൌ ߨʹ ∙ ݈ ∙ ݓ ∙ ℎ      (1) 

A bottle on the other hand needs to be modelled piecewise. Its height can be divided into three 
parts: base, shoulders and neck as shown in figure 4. Base and neck can be modeled by a cylinder. 
The shoulders are approximated by a truncated cone. With the help of the corresponding partial 
heights ℎ஻௔௦௘ , ℎௌ௛௢௨௟ௗ௘௥௦ and ℎே௘௖௞  we can compute coefficients ݇஻௔௦௘ , ݇ௌ௛௢௨௟ௗ௘௥௦ and ݇ே௘௖௞  as 
fractions of the overall height ℎ of the bottle. The diameters of the bottle base and the neck 
opening are given by  ݀஻௔௦௘  and ݀ை௣௘௡௜  and are likewise used to compute the ratio ݇௢௣௘௡௜௡௚. 
Since bottles have circular bases, the values for width ݓ and length ݈ in the original data have to 
be the same and either one may be used for ݀஻௔௦௘ . These four coefficients are characteristic for 
each bottle type, be it beer or wine (table 3). With their help, a bottle type specific volume from 
the original data length, width and height can be computed which is a much better approximation 
to the true volume than the former cuboid model. 
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Figure 4. General parametric bottle description 
 

Coefficient Burgunder Bordeaux Schlegel NRW Longneck Steini Euro 

݇஻௔௦௘
஻௧௬௣௘  0.48 0.60 0.34 0.59 0.52 0.52 0.62 

݇ௌ௛௢௨௟ௗ௘௥௦
஻௧௬௣௘  0.32 0.13 0.44 0.28 0.13 0.29 0.34 

݇ே௘௖௞
஻௧௬௣௘  0.20 0.27 0.22 0.13 0.35 0.19 0.24 

݇ை௣௘௡௜௡௚
஻௧௬௣௘  0.40 0.40 0.40 0.37 0.37 0.43 0.35 

 
Table 3. Empirically measured coefficients for different bottle types 

 

The bottle base can be modelled as a cylinder as follows: 

஻ܸ௔௦௘
஼ ൌ ߨʹ ∙ ݈ ∙ ݓ ∙ ℎ ∙ ݇஻௔௦௘

஻௧௬௣௘      (2) 
 

The bottle shoulders have the form of a truncated cone and are described by formula 3:  

  �

ௌܸ௛௢௨௟ௗ௘௥௦
஼ ൌ 1

12
ߨ ∙ ℎ ∙ ݇ௌ௛௢௨௟ௗ௘௥௦

஻௧௬௣௘ ∙ ݈ ∙ ቀ݈ ൅ ݈ ∙ ݇ை௣௘௡௜௡௚
஻௧௬௣௘ ൅ ݈ ∙ ݇ை௣௘௡௜௡௚

஻௧௬௣௘ 2
ቁ  (3) 

The bottle neck again is a simple cylinder: 

�
ேܸ௘௖௞
஼ ൌ ߨʹ ∙ ݈ ∙ ݓ ∙ ݇ை௣௘௡௜௡௚

஻௧௬௣௘ ∙ ℎ ∙ ݇ே௘௖௞
஻௧௬௣௘    (4) 

Summing up all three sections yields the packaging type specific volume for bottles: 

஻ܸ௢௧௧௟௘
஼ ൌ ஻ܸ௔௦௘

஼ ൅ ௌܸ௛௢௨௟ௗ௘௥௦
஼ ൅ ேܸ௘௖௞

஼     (5) 
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5 Experiments 

The experiments follow the multi-level feature engineering scheme as shown in figure 1. First, 
we use only the original features product group and dimensions. Then we add the first level 
engineered features capacity and bottle type to the basic features. Next the second level 
engineered feature packaging type specific volume is used along with the basic features. Finally 
all features from every level are used for the prediction. After pre-processing and feature 
engineering the data set size is reduced from 3659 to 3380 beers and from 10212 to 8946 wines. 

5.1 Algorithms and metrics 

For prediction of the continuous valued attribute gross weight, we use and compare several 
regression algorithms. Both the decision-tree based Random Forests algorithm (Breimann, 2001) 
and support vector machines (SVM) (Cortes, 1995) are available in regression mode (Smola, 
1997). Linear regression (Lai, 1979) and stochastic gradient descent (SGD) (Taddy, 2019) are 
also employed as examples of more traditional statics-based methods. Our baseline is a heuristic 
approach taking the median of the attribute gross weight for each product group and use this 
value as a prediction for all products of the same product group. Practical experience has shown 
this to be a surprisingly good strategy.  

The implementation was done in Python 3.6 using the standard libraries sk-learn and pandas. All 
numeric features were logarithmized prior to training the models. The non-numeric feature bottle 
type was converted to numbers. The final results were obtained using tenfold cross validation 
(Kohavi, 1995). For model training 80% of the data was used while the remaining 20% 
constituted the test data. 

We used the root mean square error (RSME) (6) as well as the mean and variance of the absolute 
percentage error ݁௔௣

�   (7) as metrics for the evaluation of the performance of the algorithms. 

ܧܯܴܵ ൌ �∑ ቀ௩೙
೛ೝ೐೏೔೎೟೐೏−௩೙

೟ೝೠ೐ቁ
మಿ

೙సభ

ே
    (6) 

݁௔௣
� ൌ 1

ே
∑

ቚ௩೙
೛ೝ೐೏೔೎೟೐೏−௩೙

೟ೝೠ೐ቚ

௏೟ೝೠ೐
�

ே
௡=1     (7) 
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5.2 Results 

Features Algorithm RSME Mean ݁௔௣
�  Var ݁௔௣

�  

Product group Baseline 216.40 14.28 319.00 
Dimensions, product group Linear Regression 135.12 8.89 114.78 
Dimensions + capacity Linear Regression 142.97 9.19 137.32 
Dimensions + bottle_type Linear Regression 152.39 9.02 127.72 
Dimensions + bottle_type + capacity Linear Regression 136.45 8.19 115.92 
Dimensions + packaging_type_specific_volume Linear Regression 181.30 8.33 114.12 
Dimensions + all engineered features Linear Regression 133.91 8.08 122.09 
Dimensions, product group SGD 142.81 10.10 124.41 
Dimensions + capacity SGD 124.68 8.09 129.19 
Dimensions + bottle_type SGD 143.38 10.39 105.47 
Dimensions + bottle_type + capacity SGD 176.30 8.96 142.60 
Dimensions + packaging_type_specific_volume SGD 135.59 10.34 142.80 
Dimensions + all engineered features SGD 154.62 9.37 138.82 
Dimensions, product group Random Forest 91.73 6.72 121.45 
Dimensions + capacity Random Forest 98.75 4.98 106.12 
Dimensions + bottle_type Random Forest 91.75 4.59 80.94 
Dimensions + bottle_type + capacity Random Forest 83.25 3.76 71.17 
Dimensions + packaging_type_specific_volume Random Forest 111.72 5.68 113.28 
Dimensions + all engineered features Random Forest 99.93 3.62 81.77 
Dimensions, product group SVM 114.48 5.36 95.73 
Dimensions + capacity SVM 118.00 5.08 160.38 
Dimensions + bottle_type SVM 140.16 5.13 88.88 
Dimensions + bottle_type + capacity SVM 143.62 5.63 94.00 
Dimensions + packaging_type_specific_volume SVM 118.87 3.88 94.16 
Dimensions + all engineered features SVM 125.67 3.99 80.47 

 
Table. 4. Weight prediction result metrics for beer with different feature combinations 

All machine learning algorithms deliver significant improvements regarding the observed 
metrics compared to the heuristic median approach. The best results for each feature combination 
are highlighted in bold script. The results for the beer data set in table 4 show that the RSME can 
be more than halved, the mean ݁௔௣

�  almost be reduced to a third and the variance of ݁௔௣
�  quartered 

compared to the baseline approach. The Random Forest regressor achieves the best results in 
terms of RSME and ݁௔௣

�  for almost all feature combinations except basic features and basic 
features combined with the packaging type specific volume, in which cases Support Vector 
Machines prove superior. Linear regression and SGD are are still better than the baseline 
approach but not on par with the other algorithms. Linear regression shows the tendency to 
improved results when successively adding features. SGD on the other hand exhibits no clear 
relation between number and level of features and corresponding prediction quality. A possible 
cause could be the choice of hyper parameters. SGD is very sensitive in this regard and depends 
more heavily upon a higher number of correctly adjusted hyper parameters than the other 
algorithms we used. Random Forests is a method which is very well suited to problems, where 
there is no easily discernable relation between the features. It is prone to overfitting, though, 
which we tried to avoid by using 20% of all data as test data. Adding more engineered features 
leads to increasingly better results using Random Forest with an outlier for the packaging type 
specific volume feature. SVM are not affected by only first level engineered features but profit 
from using the bottle type specific volume. 
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Features Algorithm RSME Mean ݁௔௣
�  Var ݁௔௣

�  

Product group Baseline 38931.0 13.10 1125.00 
Dimensions, product group Linear Regression 30653.4 7.55 144.10 
Dimensions + capacity Linear Regression 36168.2 7.41 121.60 
Dimensions + bottle_type Linear Regression 37132.2 7.56 143.80 
Dimensions + bottle_type + capacity Linear Regression 40533.5 7.40 120.50 
Dimensions + packaging_type_specific_volume Linear Regression 42894.9 7.48 125.47 
Dimensions + all engineered features Linear Regression 34322.8 7.54 134.60 
Dimensions, product group SGD 34079.4 8.12 131.04 
Dimensions + capacity SGD 32039.8 7.83 95.69 
Dimensions + bottle_type SGD 32448.1 10.31 137.76 
Dimensions + bottle_type + capacity SGD 43545.4 11.69 178.17 
Dimensions + packaging_type_specific_volume SGD 37905.3 8.43 144.81 
Dimensions + all engineered features SGD 31762.2 11.57 146.07 
Dimensions, product group Random Forest 30999.9 6.98 121.08 
Dimensions + capacity Random Forest 38385.0 6.84 124.00 
Dimensions + bottle_type Random Forest 34032.1 6.65 118.17 
Dimensions + bottle_type + capacity Random Forest 39852.3 6.45 107.87 
Dimensions + packaging_type_specific_volume Random Forest 35509.5 7.18 143.60 
Dimensions + all engineered features Random Forest 34986.3 6.67 118.83 
Dimensions, product group SVM 39030.4 7.07 102.15 
Dimensions + capacity SVM 38132.8 7.18 118.53 
Dimensions + bottle_type SVM 38843.5 7.18 128.90 
Dimensions + bottle_type + capacity SVM 30109.9 7.23 140.37 
Dimensions + packaging_type_specific_volume SVM 35044.4 7.47 159.21 
Dimensions + all engineered features SVM 38993.4 7.35 135.40 

 
Table. 5. Weight prediction result metrics for wine with different feature combinations 

Regarding the wine data set the results depicted in table 5 are not as good as for the beer data set 
though still much better than the baseline approach. A reduction of the RSME by over 29% and 
of the mean ݁௔௣

�  by almost 50%  compared to the baseline were achieved.  The variance of ݁௔௣
�  

could even be limited to under 10% of the baseline value. Again Random Forests is the algorithm 
with the best ݁௔௣

�  metrics. Linear regression and SVM are comparable in terms of ݁௔௣
�  while SGD 

is worse but shows good RSME values. In conclusion the general results of the wine data set 
show not much improvement when applying additional engineered features.  

6 Discussion and Conclusion 

The experiments show a much better predicting quality for beer than for wine. A possible cause 
could be the higher weight variance in bottle types compared to beer bottles and cans. It is also 
more difficult to correctly determine the bottle type for wine, since the higher overlap in 
dimensions does not allow to compute the bottle type with the help of idealized bottle 
dimensions. Using expert knowledge to assign the bottle type by region and grape variety seems 
not to be as reliable, though. Especially with regard to the lack of a predominant bottle type in 
the region with the most bottles (red wine from Baden for example), this approach should be 
improved. Especially Bordeaux bottles often sport an indentation in the bottom, called a ‘culot 
de bouteille’. The size and thickness of this indentation cannot be inferred from the bottle’s 
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dimensions. This means that the relation between bottle volume and weight is skewed compared 
to other bottles without these indentations, which in turn decreases prediction quality. 

Predicting gross weights with machine learning and domain-specifically engineered features 
leads to smaller discrepancies than using simple heuristic approaches. This is important for retail 
companies since big deviations are much worse for logistical reasons than small ones which may 
well be within natural production tolerances for bottle weights. Our method allows to check 
manually generated as well as data pool imported product data for implausible gross weight 
entries and proposes suggestion values in case of missing entries. 

The method we presented can easily be adapted to non-alcoholic beverages using the same 
engineered features. In this segment, plastics bottles are much more common than glass ones and 
hence the impact of the bottle weight compared to the liquid weight is significantly smaller. We 
assume that this will cause a smaller importance of the bottle type feature in the prediction. A 
more problematic kind of beverage is liquor. Although there are only a few different standard 
capacities, the bottle types vary so greatly, that identifying a common type is almost impossible.  
One of the main challenges of our approach is determining the correct bottle types. Using expert 
knowledge is a solid approach but cannot capture all exemptions. Especially if a wine growing 
region has no predominant bottle type and is using mixed bottle types instead. Additionally many 
wine growers use bottle types which haven’t been typical for their wine types because they want 
to differ from other suppliers in order to get the customer’s attention. Assuming that all Rieslings 
are sold in Schlegel bottles, for example, is therefore not exactly true. One option could be to 
model hybrid bottles using a weighted average of the coefficients for each bottle type in use. If 
a region uses both Burgunder and Bordeaux bottles with about equal frequency, all products 
from this region could be assigned a hybrid bottle with coefficients computed by the mean value 
of each coefficient. If an initially bottle type labeled data set is available, preliminary simulations 
have shown that most bottle types can be predicted robustly using classification algorithms. The 
most promising strategy, in our opinion, is to learn the bottle types directly from product images 
using deep neural nets for example. With regard to the ever increasing online retail sector, web 
stores need to have pictures of their products on display, so the data is there to be used. 
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