
Improving Temporal Consistency in Aerial Based

Crowd Monitoring Using Bayes Filters

Jan Calvin Kramer1, Thomas Golda2, Jonas Hansert1, and Thomas Schlegel1

1 Karlsruhe University of Applied Sciences, Institute of Ubiquitous Mobility Systems IUMS
{Jan Calvin.Kramer, Jonas.Hansert, Thomas.Schlegel}@h-ka.de

2 Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB
Thomas.Golda@iosb.fraunhofer.de

Abstract. In order to monitor mass events, crowd managers continuously require
reliable measurements of the crowd count. For this purpose, a variety of deep
learning algorithms has been developed. Most of these so-called crowd counting
algorithms return good results for still imagery but return oscillating crowd counts
for video data. This is because, most crowd counting algorithms evaluate video
data frame by frame and ignore the temporal relation between adjacent frames. In
this paper, a variety of Bayesian filters is presented that successfully smooth the
oscillating counts which in turn can lead crowd managers to trust the system more.
The proposed filters work on top of the crowd counting algorithms’ estimates.
Thus, they can be easily used with any existing crowd counting algorithm that
outputs a density map for a given input image.

Keywords: crowd counting, crowd count, density map, crowd manager, mass
panic, video data, bayesian filters, kalman filter, particle filter, aerial imagery

1 Introduction

Mass events take place every day all over the world. Despite the joy these events bring to
many people, they always come with the threat of turning into a stampede. To prevent
this, crowd managers must be aware of the current crowd count and density and take
the right measures in time.
For this purpose, a variety of algorithms have been developed since 2006. These so-called
crowd counting algorithms take an image as their input and estimate the amount of
people in the picture. Recent crowd counting algorithms go even further. Using Convo-
lutional Neural Networks, they estimate a whole density map for a given input image.
The density map itself holds the information of the crowd count that can be obtained
by adding up the density map’s pixel values. Gao et al. give a good insight into current
advances and the huge amount of different crowd counting algorithms that exist [1].
Despite the many advances, current crowd counting algorithms do not consider the tem-
poral relation between adjacent frames. Most crowd counting algorithms evaluate video
data frame by frame and ignore the temporal relation. This often leads to fluctuating
counts that the crowd manager cannot rely on. Only a few isolated approaches, e.g.,
the Temporal Aware Network [2], exist, that try to incorporate the temporal relation
of adjacent frames. In contrast to their approach of presenting a new architecture that
incorporates the temporal relation, we developed a variety of Bayesian filters that work
on top of the counts estimated by current crowd counting algorithms. The filters can be
used with any modern crowd counting algorithm that outputs a density map for a given
input image.

224

2 Related Work

The following section gives a brief overview of the existing technologies this work builds
upon. Firstly, two crowd counting algorithms, i.e., the CSRNet and MRCNet, are intro-
duced. The crowd counters are used throughout this work to estimate the crowd counts
of different data sets and to reproduce the problem of having oscillating counts. Secondly,
Bayesian filters on which the developed concepts are based are briefly discussed.

2.1 CSRNet

The Congested Scene Recognition Network (called CSRNet hereafter) is a crowd counting
algorithm developed by Li et al. in 2018 [3]. The network is divided into two parts, i.e.
the front- and back-end. Both parts exclusively rely on (dilated) convolutional and max
pooling layers.
The CSRNet’s front-end consists of the VGG-16’s first 10 layers. It extracts several
features from an input image. The features are stored in a so-called feature map whose
resolution is 1/8 of the resolution of the input image. The feature map is further processed
by the back-end of the network. The back-end uses several dilated convolutional layers.
Thus, it is able to extract even deeper features without further shrinking the resolution
of the feature map. In order to output a density map that has the same size as the
input image, the CSRNet uses bilinear interpolation with a factor of 8. A more detailed
description can be taken from [3].

2.2 MRCNet

The Multi-Resolution Crowd Network (called MRCNet hereafter) is a crowd counting
algorithm developed by Bahmanyar et al. from the German Aerospace Center [4]. The
network relies on an encoder-decoder-structure. Analogous to the front-end of the CSR-
Net, the encoder of the MRCNet relies on the VGG-16. Yet, it does not only use the first
ten layers but the first five CNN blocks of the VGG-16 that consist of 13 convolutional
layers and five max-pooling layers in total. Since it uses more pooling layers, the size of
the outputted feature map is 1/32 the size of the input image. Such a drastic reduction of
the resolution can accidentally lead to people being removed. To prevent this, the feature
maps at different stages of the encoder are added element-wise to the feature maps of
the decoder.
The decoder of the MRCNet consists of five CNN blocks as well. However, instead of
using pooling layers at the end of each CNN block, the decoder uses up-sampling layers.
Each up-sampling layer increases the size of the feature map by a factor of two. Thus, at
the end of the decoder, the MRCNet outputs a density map that has the same resolution
as the input. Prior to outputting the density map, the MRCNet outputs a feature map
whose resolution is 1/4 the resolution of the input image. This feature map is used to
estimate the overall amount of people in an image. By estimating the amount of people
at an early stage of the decoder, the remaining part of the decoder can be further used
to output a full-resolution density map that has a higher localization precision. Further
information about the MRCNet can be taken from [4].

2.3 Bayesian Filters

Bayesian filters have been around for quite a while. In short, they are a set of algorithms
that iteratively estimate the hidden state of a system, e.g., the current crowd count, using

225

imprecise measurements, e.g., estimated density maps, and a model of the system state,
e.g., a traffic flow model [5].
The Kalman and particle filter are a subset of the Bayesian filters. They differ in that the
Kalman filter returns an optimal solution under certain restrictions whereas the particle
filter returns a good approximation while being less restrictive. The Kalman filter assumes
the underlying model to be linear and discrete in the time domain. Furthermore, the
process and measurement noise are assumed to be Gaussian with a zero mean. If these
restrictions are not fully complied with, the particle filter is likely to return even better
results than the Kalman filter.
A thorough understanding of both filters is necessary to fully understand the concepts
that follow. A good insight is given by [5], [6] and [7].

3 Concepts

The following chapter explains the developed concepts of this paper.

3.1 Kalman Filter

A complete concept of a Kalman filter requires the definition of the state vector, state
transition matrix, measurement matrix, process noise variance and measurement noise
variance.
To not further increase the computational costs that come with crowd counting, the state
vector considers only the crowd count and not the density map as a whole. The crowd
count is further expected not to change between two consecutive frames. This assumption
leads to a linear state transition matrix that only consists of the value 1.
The accuracy of this assumption depends mainly on two variables, i.e., the area under
consideration (denoted by A) and the frame rate of the video (denoted by f). For either
A going towards zero or f going towards infinity, the assumption that the crowd count
does not change becomes true. Thus, the concept is supposed to return better results for
video data with higher frame rates and scenes with smaller areas. The scene of an image
can be artificially reduced by applying the Kalman filter on grids rather than the whole
image. Experiments testing this behavior are conducted in the next chapter.
Yet, in practice, neither A becomes zero nor f goes towards infinity. This makes the
state transition matrix inaccurate. To model this error, one must define the process noise
variance (matrix).

Data-Driven Process Noise Variance. To get an estimate for the process noise
variance, the information given by the training data is used. Given the annotations of the
training data, one can calculate the change of pedestrians between two consecutive frames
by subtracting their annotated crowd counts. The calculated pedestrian changes can be
fitted to a Gaussian curve in a next step. Assuming that the set of pedestrian changes is
normally distributed with a zero mean, the variance of the Gaussian curve corresponds
to the actual variance of the process noise when the Kalman filter was applied to the
training data. To obtain an estimate that generalises better on data sets with different
crowd counts, one must consider the percentage change of pedestrians rather than the
absolute change. Let ck−1 and ck be the crowd count of two consecutive frames, then the
percentage change of pedestrians (∆crel) can be calculated as follows:

∆crel =
ck − ck−1
ck−1

(1)

226

Fitting the percentage changes to a Gaussian curve results in a relative process noise
variance denoted by σrel. To retrieve an absolute estimate of the process noise variance,
one must iteratively multiply the relative variance with the previous posterior estimate
of the Kalman filter and the frame rates’ ratio:

σk = c̄k−1 · σrel ·
ftraining
ftesting

(2)

Data-Driven Measurement Noise Variance. To model the measurement noise vari-
ance, a data driven approach similar to the one of the process noise variance is used.
Yet, instead of computing pedestrian changes of the training data, the performance of
the crowd counter on the validation data is used. For this purpose, the percentage dif-
ferences between the crowd counter’s estimate and the corresponding ground truth is
calculated. The percentage differences are also fitted to a Gaussian curve. Again, the
variance that is obtained using this approach is a relative value that must be iteratively
multiplied with the current measurement of the crowd count.

Data-Driven Observation Matrix. The final parameter that must be modelled to
obtain a complete concept of a Kalman filter is the observation matrix. The observation
matrix says how the measurements must be processed before they are further used within
the Kalman filter. Therefore, if the measurements that are passed to the Kalman filter
do not have an error with a zero mean, the observation matrix can theoretically be used
to process the measurements in such a way that their error has a zero mean afterwards.
For this purpose, the Gaussian curve, that is obtained during the computation of the
variance of the measurement noise, is used. The relative mean denoted by µrel expresses
the average deviation of the ground truth from the estimates computed by the crowd
counter on the validation set. The oversimplified assumption that the error of the crowd
counter depends only on the crowd count, lets one use the simple term 1 − µrel for the
observation matrix.

3.2 Particle Filter

The developed particle filter only considers the crowd count as well. Yet, a more complex
model for the state transition matrix is used. The model of choice is the macroscopic
fundamental diagram of traffic flow. Let Q be the flow, Q∗ be the flow density, v0 be the
velocity of the pedestrians, w be the width through a gateway in meters, ρ and ρmax be
the current density and maximum density of pedestrians respectively, then the flow of
pedestrians can be calculated as follows:

Q∗(ρ) = ρ · v0 · (1−
ρ

ρmax
) [
pedestrians

m · s] (3)

Q = Q∗ ·w [pedestrians
s

] (4)

Assuming that ρmax = 5
pedestrians

m2 and v0 = 1.4
m
s , it only requires the current density

and the width of the gateway to estimate the flow of pedestrians [8].
Unfortunately, the traffic flow model comes with a major restriction that it assumes the
flow of pedestrians to be unidirectional. To loosen this restriction and obtain a more
realistic model, the filter does not assume the overall flow of a scene to be unidirectional.

227

Flows of open borders that are located at the edge of the image are assumed to be
independent from each other and unidirectional. Making this assumption, three questions
arise that must be further clarified:

– How does the system detect open borders at the edge of the image?
– What area around an open border must be considered to estimate the density at the
open border?

– Given the flow at an open border, how does one estimate the direction of flow?

3.3 Detection of Open Borders

The annotation of open borders is assumed to be manually done by the user at the
beginning. The user is expected to create a mask for the first frame of a video. Areas
where people can possibly walk are supposed to be colored in white, whereas areas where
people cannot be, e.g., a frontage, must be colored in black. By reading in the mask
and dividing the pixel values by 255, one obtains a 2 dimensional matrix of zeros and
ones. The information where the open borders are located can then be easily obtained
by looking for non-zero sequences in its outermost rows and columns.
It is further used as an alternative measurement matrix that is multiplied element-wise
with incoming density maps. Subsequently, all elements of the resulting matrix are added
up to obtain the crowd count that is further processed by the particle filter. It should be
noted that this approach might delete some rightfully annotated persons. This is because
the ground truth density maps that are used to train the crowd counting algorithms
are created by blurring the given head annotations using a Gaussian kernel. Thus, per-
sons standing nearby a frontage might overlay the frontage in a density map. Yet, this
approach ensures that areas where pedestrians can impossibly be, e.g., a sea, are not
wrongfully labeled by the crowd counter.

3.4 Determining the Density at an Open Border

To estimate the density at an open border j at the previous point in time k − 1, a
rectangular cutout of the density map at k − 1 is used. One side of the rectangle is the
open border itself, whereas the length of the other side is determined by the maximum
distance pedestrians are assumed to walk between two consecutive frames (called step
size hereafter). Let v0 be the pedestrian’s estimated velocity and ∆t be the time between
two consecutive frames, then the step size can be calculated as follows:

∆sm = ∆t · v0 [m] (5)

∆spixel = ∆t · v0 · 1/g [pixel] (6)

where g corresponds to the ground sampling distance in meter per pixel.
Given a cutout of a density map, you can easily calculate the estimated crowd count
within the cutout (denoted by cj,k−1) by adding up the pixel values of the cutout. Let
further aj and bj be the lengths of the rectangle in pixels, then the density of the rect-
angle can be calculated as follows:

ρj,k−1 =
cj,k−1
aj · bj · g2

[
pedestrians

m2
] (7)

228

where

– ρj,k−1 [pedestrians/m
2] is the density of the j’th rectangle at k-1,

– g [m/pixel] is the ground sampling distance in meter per pixel.

Given ρj,k−1, the estimated flow at the rectangle can be calculated using the equations 3
and 4. It should be noted that w corresponds to the length of the open border in meters.

3.5 Determining the Flow of Direction at an Open Border

It is further important to know whether pedestrians are either leaving or entering the
scene. To estimate the flow of direction, Gunnar Farneback’s algorithm is used. For each
open border, the algorithm is given an enlarged rectangular cutout of the previous and
current frame (not the density map!). The algorithm estimates the movement of the
pixels in the x- and y-direction within the enlarged rectangle [9]. Although the algorithm
calculates the movement in both directions, only one direction is relevant. For open
borders located on the left or right of the image, the x-direction is of interest, whereas
for open borders located at the top or bottom of the image the movement in the y-
direction is of interest. By adding up the magnitudes by which the pixels are estimated
to move along the relevant direction, you can obtain the magnitude of the pixels’ overall
movement along the direction. This value is denoted by mj,k−1 [pixel] in the following.
Whereas negative values ofmj,k−1 measured on the left side or at the bottom of an image
indicate an outflow, they indicate an inflow when they are measured at the top or on the
right side of an image.
If you would use a rectangle with the same dimensions as the rectangle used to determine
the density, you would probably run into the problem that the algorithm would detect no
movement when all pedestrians in the rectangle were to leave the rectangle. Therefore, an
enlarged rectangle is used that holds pedestrians that are unable to leave the rectangle
between two consecutive frames. One side of the enlarged rectangle is the open border
itself. The other side is three times the step size.
Given this information, one can calculate the maximum magnitude the algorithm can
detect. Let wj be the length of the open border in pixel, then the maximum magnitude
can be calculated as follows:

mj,max = 2 ·∆s2pixel · wj ·
1

pixel2
[pixel] (8)

Whereas Q is an estimate of the pedestrian’s flow obtained by the fundamental traffic
flow model, the ratio of mj,k−1/mj,max is an actual measurement. To get an estimate of
the pedestrian change, both values are combined:

∆cj,k−1 = Q(ρj,k−1) ·∆t ·
|mj,k−1|
mj,max

[pedestrians] (9)

Depending on whether mj,k−1 indicates an outflow, ∆cj,k−1 must be further multiplied
by −1:

∆cj,k−1 =
+∆cj,k−1 inflow

−∆cj,k−1 outflow
(10)

To get the total change of pedestrians that is expected between the consecutive frames,
one must add up all ∆c:

∆ck−1 =
k=n

j=1

∆cj,k−1 (11)

229

Adding this result to the samples of the posterior distribution at k−1 returns the samples
of the priori distribution at k. Let c̄ ik−1 be the i’th sample from the posterior distribution
at k − 1, then the priori estimate of the i’th sample can be calculated as follows:

c̄ ik|k−1 = c̄
i
k−1 +∆ck−1 (12)

4 Experiments

To train and test the crowd counting algorithms and filters, different data sets are used.
Table 1 shows the fundamental differences of the data sets. Tests in the aerial domain
are conducted as follows: Firstly, the crowd counters are pre-trained using the DLR-ACD
data set [4] to overcome the lack of video data in that domain. Then, the crowd counting
algorithms are fine-tuned on the VisDrone-CC2020 data set [10]. Subsequently, tests on
the VisDrone-CC2020 and AgoraSet [11] are conducted.
Finally, tests on the WorldExpo’10 data set [12] are conducted. Due to the different
domain, the crowd counting algorithms must be trained from scratch prior to testing.

Table 1. Comparison of the data sets. N is the number of annotated frames; FPS is the number
of annotated frames per second; GSD is the ground sampling distance in cm/pixel; AR is the
average resolution and IP is the interval in which the annotated crowd counts lay. The GSDs of
the AgoraSet and VisDrone-CC2020 are estimated values. All specified values of the AgoraSet
refer to the the frames 418-1936 of its first sequence

N FPS Aerial Artificial GSD AR IP

DLR-ACD 33 image true false 4.5 - 15 3619×5226 285-24368
VisDrone-CC2020 3360 1 true false 0.118 - 0.706 1920×1080 25-421

AgoraSet 1519 25 true true 4.5 640×480 1-180

WorldExpo’10 3980 1/30 false false perspective 576×720 1-253

To determine the performance of the filters, the Mean Absolute Error of the estimated
crowd counts and the Mean Absolute Error of the estimated crowd counts’ slope is
calculated. Let c be the crowd count and c̄ be the estimated crowd count, then the MAE
of the estimated crowd count and its slope can be calculated as follows:

MAEcrowd count =

k=n

k=1

|ck − c̄k|

n
(13)

MAEslope =

k=n

k=2

|ck − ck−1 − (c̄k − c̄k−1)|

n− 1 (14)

Both MAEs indicate better performance for values closer to zero and worse performance
for higher values. They differ in that the MAEslope shows how good the filters smooth
the data and the MAEcrowd count shows how close the counts are to the actual crowd
count. Since the focus of this paper lays on smoothing the counts, it is the overriding
goal to reduce the MAEslope without increasing the MAEcrowd count.

230

4.1 VisDrone-CC2020

Tests on the VisDrone data set are conducted to test the behavior of the filters on a data
set from the aerial domain the crowd counters are fine-tuned on.
Table 2 shows the results. In general, the filters smooth the temporal courses of the
estimated crowd counts. This is shown by a decrease in the MAEslope. The values of the
raw crowd counters are reduced by 56% to 65%.
The Kalman filter applied to the whole frame smooths the data the most. This contradicts
the initial assumption that the Kalman filter works better on smaller grids. The problem
here is that the pixel values of the estimated density maps are not consistently positive.
Therefore, if the density map is divided into smaller grids, some of the grids contain
negative crowd counts. If one inputs these negative values into a Kalman filter, the filter
outputs arbitrarily high or low numbers over time. To solve this problem, the count is
set to zero, the process noise variance is set to 1, and the measurement noise variance is
set to 1000 when a negative crowd count occurs.
Although this approach makes the grid-based Kalman filter work, it does not enable the
filter to develop its full potential. Yet, it comes with a more than welcome side effect.
By setting the negative crowd counts of single grids to zero, the grid-based Kalman filter
returns the best results for the MAEcrowd count.
The displayed results of the grid-based Kalman filter are obtained using 1x1 meter grids.
Tests with 3x3 and 10x10 meter grids were conducted. Yet, it turned out that on the
VisDrone as well as on the other data sets, 1x1 meter grids return the best results.

Table 2. Results on the VisDrone-CC2020 data set. The MAEslope is reduced by 56% to 65%.
All filters successfully smooth the estimated crowd counts

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 29.30 21.08 4.23 3.98

Kalman 30.89 (+5%) 18.31 (-13%) 1.47 (-65%) 1.44 (-64%)

Kalmangrid 25.78 (-12%) 16.52 (-22%) 1.60 (-62%) 1.75 (-56%)

Particle 28.63 (-2%) 17.00 (-19%) 1.59 (-62%) 1.62 (-59%)

4.2 AgoraSet

In order to see how the filters work on data with more realistic frame rates (25 fps),
tests on the AgoraSet are conducted. Although its frame rate covers a more realistic use
case, its data is artificial. To the best of our knowledge, non-artificial alternatives are not
publicly available due to the high effort that comes with annotating such data sets.
When speaking of the AgoraSet only the first sequence of the AgoraSet is meant. This
is because, all sequences cover a pretty similar scenario from a crowd counting perspec-
tive. The backgrounds are monotonous and do not significantly differ. In addition to
that, pretty much all of the sequences’ temporal courses of the crowd count resemble a
parabola with a downward opening.
The tests were directly conducted after the tests on the VisDrone-CC2020 data set with-
out fine-tuning the crowd counters on the AgoraSet or reconfiguring the Kalman filter’s

231

parameters. Nevertheless, the filters are able to smooth the temporal courses of the crowd
count even more. The MAEslope is reduced by 68% to 88%. Again, the Kalman filter ap-
plied to the whole image smooths the data the best. Yet, the particle and grid-based
Kalman filter return good results as well. If only the MAEcrowd count is considered, the
particle filter returns the best results.
The results show that the filters smooth the data even better on data sets with higher
frame rates. In addition to that, the tests indicate that the initialization of the Kalman
filter’s parameters on a previous data set does not impair its performance on another
data set.

Table 3. Results on the first sequence of the AgoraSet. Although the crowd counting algorithms
and filters have not seen data from the AgoraSet before, the filters are able to smooth the
estimated crowd counts even more

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 26.06 43.72 1.5 2.01

Kalman 27.55 (+6%) 44.45 (+2%) 0.27 (-82%) 0.25 (-88%)

Kalmangrid 25.49 (-2%) 43.98 (+1%) 0.45 (-70%) 0.65 (-68%)

Particle 25.40 (-3%) 43.84 (±0%) 0.39 (-74%) 0.42 (-79%)

4.3 WorldExpo’10

Finally, tests are conducted on a perspective data set that has a significantly lower frame
rate than the previous ones. Since the WorldExpo’10 data set does not contain aerial im-
ages, the particle filter as conceptualised in this paper cannot be applied. The grid-based
Kalman filter also runs into the problem that its hard to divide a perspective image into
same sized grids. To handle this problem, the face length of a person in the front and
back of a random frame is measured. Assuming that the average face length of a person
is 23 centimeters, one can calculate two GSDs - one for the front and one for the back
of the image. The average of the two GSDs is used to determine the grids. It should be
noted that this approach is only a hot-fix to make the filter work and that grids in the
back still cover larger areas than grids in the front.
Table 4 shows the results. It can be seen that the MAEslope does not significantly improve.
However, this is much more due to the low frame rate and not the perspective of the
data set. The time between two frames of the WorldExpo’10 data set is 30 seconds. Due
to the large time interval between the frames, it can be said that consecutive frames do
not hold any temporal information that could be incorporated by the filters. To sum up,
the results stress out the importance of the frame rate when applying the filters. If the
time interval between consecutive frames becomes too large, the filters do not improve
the estimates of the crowd counters. Yet, since a frame rate of 1/30 fps does not capture
a realistic scenario, the results of the tests on the WorldExpo’10 do not contradict with
the applicability of the filters in a real-life situation.

232

Table 4. Results on the WorldExpo’10 data set. Due to the low frame rate, adjacent frames do
not share temporal information that can be incorporated by the filters

MAEcrowd count MAEslope

CSRNet MRCNet CSRNet MRCNet

Unfiltered 17.15 18.12 8.8 8.6

Kalman 19.74 (+15%) 18.14 (±0%) 8.2 (-7%) 8.4 (-2%)

Kalmangrid 19.73 (+15%) 17.95 (-1%) 9.54 (+8%) 8.9 (+3%)

5 Conclusions

The paper shows that the oscillating counts estimated by current crowd counters for
video data can be smoothed using Bayesian filters. As a measurement of the false oscil-
lation the MAEslope is introduced. Provided that the frame rate of a data set is large
enough that consecutive frames share temporal information, all of the three filters are
able to smooth the temporal course of the crowd count without significantly increasing
the MAEcrowd count. Future work may further address the maturation of the concepts.
The development of Bayesian filters that smooth the estimated crowd counts is still in its
infancy. A variety of traffic flow models exist that can be used to develop new concepts
that may smooth the crowd counts even more.

References

1. Gao, G., Gao, J., Liu, Q., Wang, Q., Wang, Y.: Cnn-based density estimation and crowd
counting: A survey (2020)

2. Wu, X., Xu, B., Zheng, Y., Ye, H., Yang, J., He, L.: Fast video crowd counting with a
temporal aware network. Neurocomputing 403 (Aug 2020) 13–20

3. Li, Y., Zhang, X., Chen, D.: Csrnet: Dilated convolutional neural networks for understanding
the highly congested scenes (2018)

4. Bahmanyar, R., Vig, E., Reinartz, P.: Mrcnet: Crowd counting and density map estimation
in aerial and ground imagery (2019)

5. Elmar, G.: Bayes–Filter zur Genauigkeitsverbesserung und Unsicherheitsermittlung von
dynamischen Koordinatenmessungen. dissertation, Friedrich–Alexander–Universität (2014)

6. Rhudy, M.B., Salguero, R.A., Holappa, K.: A KALMAN FILTERING TUTORIAL FOR
UNDERGRADUATE STUDENTS. (February 2017) Accessed: 2021-01-23.

7. Simon, Maskel an Neil, G.: A tutorial on particle filters for on-line nonlinear/non-gaussian
Bayesian tracking - Target Tracking. (2001)

8. Treiber, M.: Skript zur vorlesung verkehrsdynamik und -simulation (2017)
9. Farnebaeck, G.: Two-frame motion estimation based on polynomial expansion. In: Scandi-
navian Conference on Image Analysis. Volume 2749. (2003) 363–370

10. Du, D., Wen, L., Zhu, P., Fan, H., Hu, Q., Ling, H., Shah, M., ..., Zhao, Z.: Visdrone-cc2020:
The vision meets drone crowd counting challenge results (2021)

11. Allain, P., Courty, N., Corpetti, T.: Agoraset: a dataset for crowd video analysis. In: 1st
ICPR International Workshop on Pattern Recognition and Crowd Analysis. (2012)

12. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional
neural networks. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2015) 833–841

233

