
Towards generating complex programs represented as

node-trees with reinforcement learning

Andreas Reich and Ruxandra Lasowski

Hochschule Furtwangen University
reich@digitalmedia-design.com

ruxandra.lasowski@hs-furtwangen.de

Abstract. In this work we propose to use humanly pre-built functions which
we refer to as nodes, to synthesize complex programs. As e.g. in the node-tree
programming style of Houdini (sidefx.com), we propose to generate programs by
concatenating nodes non-linearly to node-trees which allows for nesting functions
inside functions. We implemented a reinforcement learning environment and per-
formed tests with state-of-the-art reinforcement learning algorithms. We conclude,
that automatically generating complex programs by generating node-trees is possi-
ble and present a new approach of injecting training samples into the reinforcement
learning process.
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1 Introduction

Many modern computer programs, especially in the 3D sector, offer users to interact with
their software via so-called nodes, constructing so-called node-trees. Nodes are atomic
parts of node-trees. Every node represents a function, a pre-programmed sequence of
computer code visually. Node-trees are a visual high-level representation of non-linear
sequences of nodes and are simpler to understand then regular code [1]. Due to the
increasing prevalence of nodes in computer software, the idea arose to utilize machine
learning to automatically generate node-trees with neural networks. Because nodes rep-
resent computer code, automatically generating node-trees with AI means automatically
generating computer code with AI. Therefore, our approach is classified in the field of
neural program synthesis.
The task of program synthesis is to automatically find programs for a given program-

ming language that satisfy the intent of users within constraints [2]. Researchers like
Bunel et. al. use supervised and reinforcement learning techniques to generate programs
by concatenating low-level nodes linearly [3]. In contrast to their approach we propose
to to generate programs concatenating high-level nodes non-linearly because this allows
for more complex programs when using the same count of nodes. Our approach aims for
automating the manual node-tree generation pipeline with AI that uses non-linear and
high-level nodes. Using high-level nodes in the generation process is beneficial:
When compiled, all non-linear node-trees are transformed into linear sequences of

code. The use of high-level nodes that consist of many low-level nodes is beneficial for
certain use cases since more complex tasks can be solved with high-level nodes than
low-level nodes (if the correct nodes are available) because more code is executed.
Most existing node-driven software solutions have a highly optimized set of high-

level nodes that are software-specific. Consequently, users can perform a great variety

205



of tasks solely using few domain-specific nodes. Automatically creating and combining
these specialized nodes with the help of AI would save users a lot of time and resources,
while keeping full editability of generated node-tress.

Developing algorithms that search for valid node-trees in a search space (space of all
possible connections) is challenging because the search space grows exponentially when
adding nodes or depth and best regular program synthesis algorithms like Chlorophyll++
are currently able to find programs in a search space of 1079 [4]. This means if the
aforementioned algorithm would work with nodes it could reliably find programs out
of a pool of 100 individual nodes and a depth of 39 nodes. According to Bod́ık finding
programs in a search space of 1079 is not sufficient to solve complex problems, e.g. like
implementing the MD5 hashsum algorithm, located in a search space of 105943 [4], since
the algorithm works with low-level functions.

However, the generation of programs becomes easier if few high-level functions, that
achieve the same result as many low-level functions, are combined. For instance, a pro-
gram could just consist of 5 pre-assembled, high-level functions that themselves consist
of hundreds of lines of code. Most algorithms could find such a program, just consisting
of 5 nodes, with ease. The complexity of finding valid programs is constrained to the size
of the search space. This means the complexity of finding node-trees built from high-level
and low-level nodes are equal since the complexity is constrained to valid connections.
Nonetheless, training an AI with high-level nodes is more costly computationally since
more code needs to be executed.

This paper strives to point out the benefits of working with high-level over low-level
functions. Performing some tests with the 3D Engine Blender and utilizing a node-based
modeling tool showed that a specific node-tree in Blender with as little as 4 nodes already
represents more than 1000 lines of computer code, whereas approaches from the Google
Brain team are able to reliably generate programs with up to 25 lines of code with AI
[5]. Figure 1 visualizes the difference between the count of nodes with the complexity of
the resulting programs.

figure 1: complexity of high-level and low-level nodes

A possible real-world use case for using automatically synthesized node-trees could be
the software Substance Designer with a completely node-driven workflow for texture and
material creation. The Substance Designer documentation states that there are about
300 individual (high-level) nodes, yet also that most of these nodes only find application
in rare, specific use cases [6]. Assuming one could build basic substance materials with
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50 different nodes and a node-tree length of 40, the complexity of the search space would
be 5040 ≈ 1068 – less than what is currently possible in regular program synthesis.
Nevertheless, a lot of the Substance Designer nodes have internal states that need to be
adjusted, so the number of nodes necessary increases since changing an internal state can
also be represented by the creation of a specific node.

Assuming one could create nearly all common Substance Designer materials by using
all 300 nodes and 300 extra nodes that represent internal state changes, the creation of
node-trees with lengths of 100 nodes leads to a search space of 600100 ≈ 10278. Compared
to solving MD5 with low-level functions and a search space complexity of 105943 [4], a
search space with the complexity of 10278 would still be way out of scope, yet more
realistic to be achievable in the upcoming decades.

Besides Substance Designer, there are many node-based software solutions that offer
a set of highly specialized nodes for different use cases. Making use of a predefined
set of nodes is beneficial since most applications with node collections are capable of
performing almost all tasks in a specific domain. We therefore identified certain areas
where generating nodes with AI could be useful:

– Parameterization of 3D meshes (input: 3D mesh, output: node-tree approximating
the modelling steps necessary to generate the mesh)

– Parameterization of photoscanned point clouds (input: point cloud, output: node-tree
approximating the modelling steps necessary to generate the point cloud)

– Creation of 2D materials from images (input: 2D image, output: node-tree approxi-
mating a PBR-material)

– Reverse-engineering of functions and programs for optimization (input: program/function,
output: optimized node-tree that approximates the program/function)

2 Purpose and Methods

We start our research for node-tree synthesis with the task of calculating a number with
combinations of mathematical low-level nodes, e.g. plus and multiplication nodes, that
are organized in a tree. In this way, we first heavily abstract more complex tasks to show
feasibility. Figure 3 shows a node-tree reliably generated by our AI. We do not directly
try to synthesize node-trees for complex graphic industry software because they require
pipeline API’s that could be implemented once the feasibility is shown. The purpose of our
research is to show that we are able to automatically create node-trees from nodes with
AI. Furthermore we want to point out the benefits of creating more complex programs
by using high-level nodes instead of low-level nodes. Positive results could enable node-
driven software solutions to utilize AI to automate processes that currently are solely
performed by human users.

We use the qualitative method to investigate the state-of-the-art through literature
research, especially concerning the comparison of publications and results of other re-
searchers. Furthermore, we use the quantitative method to build experiments to prove
that creating node-trees with supervised and reinforcement learning is possible.

To investigate the feasibility of generating node-trees with AI we implement an Ope-
nAI Gym [7] reinforcement learning environment for automated node-tree generation and
perform about 50 training sessions over the course of nine months. We use the reinforce-
ment learning neural network architecture DDPG [8] and adjust its parameters.
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To detect valid programs our actor explores a space of 825 (≈ 3.7 ∗ 1022) in which
it can perform 25 actions out of a pool of 8 individual actions. The following types of
actions can be performed by the network:

• creating and automatically
switching to new nodes

• changing internal states of
nodes

• switching back to the
previous node

figure 2: All actions that can be performed by the network

The following states are observable by the network:

• specification/goal number • relative distance to target • number of nodes in total
• count of open connections • type of the active node • id of the active node
• internal state of the active node

Since our actor is not capable of finding valid samples without guidance we use an ap-
proach which we refer to as sample injection (figure 4). During exploration we randomly
inject a valid action sequence (complete episode), which fulfils a given specification, into
the current batch instead of the actors own chosen action sequence. This yields good
results, since the actor learns from these optimal action sequences and is still capable
of exploring the environment. This method is a combination of supervised- and rein-
forcement learning. The supervised samples are random sequences of valid connections
between nodes that lead to a result (node-tree) which can be used as a specification for
training. Therefore the actor can learn how to use which node in which context in or-
der to fulfill a specification. Due to this on-the-fly generation process no data collection
is necessary. Moreover the actor can learn how to use all available nodes in different
contexts.

figure 3: node-tree found reliably in a search
space of the size of 825

(8 individual actions and max. 25 actions) figure 4: sample injection

Because the search space in which valid node-trees can be found is very large our
machine learning agent only receives sparse rewards and needs to learn from many sam-
ples. Therefore we decrease the learning rate to 10−5 and increase the replay buffer size
to 107. For the most successful training sessions we train the network for ≈ 20 million
steps. We use the following reward function, which rewards the actor for approximating
a specification. Since we use mathematical nodes the goal number serves as specification
and the current result of a node tree can be used to calculate the current distance which
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is minimized:

((goalNumber − currentDistance)− (goalNumber − previousDistance))
goalNumber

∗ incentive

DDPG uses the random Ornstein-Uhlenbeck process [9] which results in few valid
programs to be found. We therefore complement the process with a supervised process
to inject samples to enhance results. For most training sessions we inject samples 10%
of the time instead of the action of the neural network. To reduce the impact of outliers
we use the Huber loss [10] to enhance regression quality.

Figure 5 shows the network architecture of DDPG for the actor (left side) and the
critic (right side). Figure 6 shows the parameters used for training. Figure 7 shows the
pseudocode of DDPG with sample injection.

figure 5: DDPG network architecture: left: actor, right: critic

figure 6: parameters used for training DDPG

3 Results

Our experiments show that our trained AI agent is capable of generating certain node-
trees reliably from low-level nodes when given a specification. Some generated node-trees
are found with 100% accuracy in regard to a given specification whereas other node-
trees approximate a given specification to some degree. Our results therefore show the
feasibility of generating node-trees from low-level nodes with AI. Hence, We observe
that more complex specifications, that need more nodes to be solved, lead to decreasing
accuracy of our agent (table 1). This is due to the fact that the search space grows
exponentially.
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figure 7: DDPG with sample injection pseudocode

4 Limitations

Due to time and hardware limitations we are not able to find programs in a search space
of 1079 and therefore work with a smaller search space. Furthermore, we are only able
to set up our experiments using low-level nodes. However, the size of the search space
of high- and low-level nodes are equal when the same count of actions and nodes are
available. Therefore, the results of our experiments can be transferred and therefore also
apply to high-level nodes.

Table 1. Node-trees reliably generated by our algorithm in a search space with the size of 825

and their accuracy in relation to a given specification (sorted by accuracy)

Specification Exemplary action trajectory Accuracy

1,2,3,4,5,6,9 add, num, set(2), back, num, set(2) 100%
10 add, multiply, num, set(3), back, num, set(3) 90%
7,8 add, add, num, set(3), back, num, set(3), back, num, set(2) 86%
11 add, multiply, num, set(3), back, num, set(3) 81%
12 add, multiply, num, set(3), back, num, set(3) 75%
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5 Conclusions

In this work we use reinforcement learning in combination with supervised learning and
the technique of sample injection to tackle the problem of solving the combinatorial
search over node-trees that lead to the user specified result. We think that our technique
could be used to ease many tasks in computer graphics like 3D mesh generation, VFX
compositing, material generation and node-tree based scripting. We show that it is pos-
sible to automatically create node-trees from nodes with AI. Furthermore we point out
that the size of the search space when using low-level nodes and the size of the search
space when using high-level nodes are equal. This means that one can create more com-
plex programs with the same amount of high-level nodes since high-level nodes consist
of more lines of code. We therefore conclude that our technique will find application in
node-driven software solutions and will leverage academia’s interest in node-based neural
program synthesis.
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