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Abstract. Safe, efficient and uninterrupted operation of machine requires continuous 

monitoring of its health and modern autonomous smart factory demands a Condition 

Monitoring (CM) process without direct human involvement. Deep Learning (DL) 

algorithms have shown great success of learning directly from data in various real life 

applications and recently it become also popular in CM researches but still detail 

clarification of selecting the DL design and its relevance to learn the features from data 

are often missing. This paper shows a DL algorithm - Convolutional Neural Network 

(CNN) to CM of an Electric motor from its external vibration. The output of the deep 

layers of the learned model is analyzed to explain how the model extract features of raw 

vibration input and do the classification of different conditions. 

Keywords: Condition Monitoring (CM) 1; Convolutional Neural Network (CNNs) 2; 

Feature Map 3; 

1� Introduction 

In the age of the fourth Industrial Revolution, application of Artificial Intelligence is not just a 

demand but a necessity. A smart factory involves numerous machines and sensors requiring 

machine to machine and machine to human communication without interruption. Condition 

monitoring and predictive maintenance of the machines to prevent failure in advance or detect 

any anomaly early enough before breakdown is one of the key trends of Industry 4.0. 

Application of Machine Learning (ML) algorithms in the field of Condition Monitoring 

(CM) of Electric machines (EM) has been investigated and implemented in reality in various

researches for the last several years, but this is still relatively new and has a lot of room for

improvement. Vibration based CM of EM has been found very effective as the vibration

frequency analysis can uncover several electrical, mechanical defaults and as well as running

conditions of the machines. But for such analysis exact parameters of the machine and its drive

is required and furthermore in real life impending fault signatures are not as ideal as theoretical

fault signature. ML algorithms can learn from monitoring sensor data without prior knowledge

of the EM and traditional ML based CM process involves extraction of useful information

from raw data and use the extracted features as input of the ML and finally classify different

faults. This feature extraction rules is often depend on the domain, so the same algorithm may

not work for other domain or motor drive. Deep Learning (DL) algorithms which can directly

learn the features from data have recently become very popular approach in many fields

because of advancement of computation power, cloud computing, simpler tools or frameworks

and also for easily accessible large database.
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The presented paper is a continuation of previous work where novel convolutional neural 

network (CMCNN) architecture was shown to detect bearing faults using a public dataset [1]. 

In this work we used a newly generated vibration dataset for bearing faults to model the 

CMCNN architecture for multi-sensory input. Separately generated test data is used to evaluate 

the accuracy of the model and the learned model¶s deep layers are analyzed to understand the

feature extraction process. 

2� Related work: 

The challenge of beginning researching ML and DL algorithms for CM or fault diagnosis is the 

access of dataset because creating a realistic mechanical fault dataset generating test-bench is 

complex and costly. For vibration based rolling bearing fault diagnosis the dataset produced by 

Case Western Reserve University (CWRU) is the most popular and easily accessible dataset 

that has been considered as standard reference in many publications [3]. Neupane and Seok 

reviewed a large number of publications regarding DL algorithms using CWRU dataset in their 

paper [3]. Smith and Randall have analyzed the entire dataset of CWRU to recommend 

benchmark for diagnostic technique [4].  CWRU dataset has mainly six classes of data: 

healthy, inner ring fault, rolling element fault and outer ring fault at three load zone [2]. The 

faults were implemented in sizes of 0.007 to 0.028 inch with Electric Discharge Machining and 

the monitoring bearings were either at Drive-side (DE) or Fan-side (FA) of the motor. All the 

vibrations are measured with three sensors located at DE, FE and at base plate and 

measurements were taken for four motor speeds.  

Various DL algorithms like Deep Belief Networks (DBN), Autoencoder (AE), Generative 

Adversarial Networks (GAN), Recurrent Neural Networks (RNN), Convolutional Neural 

Networks (CNN) etc. are investigated to detect bearing faults using the CWRU dataset in the 

literatures. Stacks of AE based deep neural network (DNN) is applied to classify CWRU 

dataset among ten classes considering different fault sizes as different classes by Jia and et al, 

where they used the frequency spectrum of the raw data as the input [2]. Shao and et al. 

showed DBN based bearing fault classification using both simulated vibration data for inner 

and outer ring fault and the CWRU dataset dividing all the dataset into ten classes [6]. Jiang 

and et al proposed a deep recurrent network (DRNN) to automatically extract feature from 

input spectrum and diagnose rolling bearing fault in their work [7]. They consider frequency 

domain signal as input believing noisy vibration data may not be robust. The proposed DRNN 

has stack of recurrent hidden layers of long short-term memory (LSTM) units and classify the 

CWRU dataset into 12 conditions. GAN based fault diagnosis on CWRU dataset is studied by 

Jiang and et al [8]. Their idea of implementing GAN algorithm to differentiate faulty vibration 

from healthy vibration as anomaly detection, relating with real industrial scenario where faults 

appear in the bearings after millions of cycle hence data collection for faulty bearing is 

difficult. For Robust feature extraction and fault classification Shaheryar and et al proposed 

hybrid model (MCNN-SDAE) of two layers multi-channel CNN combined with three stacks of 

Denoising Autoencoder (DAE) using the CWRU dataset [9].  

Gua and et al showed a hierarchical adaptive deep convolutional network (ADCNN) using 

CWRU data where the 1D vibration is converted to 2D matrix and they tested their model for 

both fault classification also fault size predictions [10].Wide first-layer kernels with deep CNN 

(WDCNN) model is proposed by Zhang and et al also using the CWRU data [11]. They used 

data argumentation technique which is basically dividing the long signal into segments to 

create bigger dataset in which the input width is 2048. Some sets of the training data were 
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overlapped segments and some were not. Their five layer CNN was designed as the first layer 

has wide kernel size and following layers have very small kernel width and finally the model 

classified 10 labels. Other works of CNN based bearing fault diagnosis are presented in the 

literatures [12-15]. 

The investigated works in the literatures mostly used same dataset to test their model 

accuracy to test their domain adaptively for example the fan-end and drive-end vibration 

information should be clearly different and most cases it is not clear if they considered fault 

classes for both locations learn the domain robustly or not. Another most interesting note is 

many of the studies considered the faults sizes as separate classes, where the CWRU dataset 

fault sizes are clearly different (0.007 inch, 0.014 inch, 0.021 inch) which should be easily 

diagnosable. Among many DL based CM approaches, CNN has shown the most suitability of 

using raw data directly. 

In our previous work we used the CWRU dataset to train CMCNN model and classified the 

classes considering both location of the bearing and fault sizes in same class. The aim of the 

current work is to introduce a new dataset to model the CNN model where same design 

approach is considered as CMCNN presented in previous work [1].  

3� Dataset: IEEM - CMData 

The dataset contains external vibrations of a motor having different types of faulty bearings at 

various speed and load combinations. External vibration means it should contain more noise or 

additional vibration from the rotating parts which is ideal for industrial applications. The 

bearing data generating test-bench is developed at the Institute of Energy Efficient Mobility 

(IEEM) of University of Applied Science and Technology Karlsruhe and supported by SEW-

Eurodrive GmbH (SEW). In the Fig. 1 a view of the test-bench (left) and the CAD design (left) 

is shown. 
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Fig. 1. IEEM-CMData test bench 

The test-bench has test motor of power 0.75 kW and speed of 1440 RPM which is an 

asynchronous gear motor (R47 DRN80M4 by SEW) with 8.01 gear ratio connected thorough a 

highly flexible coupling with the load motor of output torque 144Nm, speed of 3000 RPM 

which is a synchronous gear motor (R47 CMP80M by SEW) with gear ratio 3.83. Artificial 

faults were implemented on different parts of the deep groove ball bearing (6304-2RSH by 

SKF). Three acceleration sensors (iCS80 by IDS Innomic GmbH) were installed near FE, DE 

and base plate (BA) to measure the vibrations. For training all types of data are generated for 

both bearings at Fan-End (FE) and Drive-end (DE) at two different sample rates. In this work 
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the sample rate of all input data of the model is 12.8kS/s. National Instrument¶s cDAQ-9174 is

used for data acquisition and data processing is done with MATLAB 2018a with additional 

package NI-DAQmx.   

Fig. 2. Example of engraved spall in the inner-ring (left) and example of reduced amount of lubrication 

for measurement (right) 

Artificial faults are implemented on different parts of the bearing to achieve different types of 

faults and one third of the recommended lubrication is used during measurements. Fig. 2 shows 

an example of a prepared bearing having a small inner-ring spall created by electric engraver 

(left) and the amount of lubrication used for the measurement (right). Table 1 contains the 

description of different types data created for the dataset with short names and labels of classes 

for the model. Among all prepared bearings, ten bearings (Training Bearings) are used to create 

training data for the CMCNN model and three bearings (Test Bearings) are kept for testing the 

model. Four speeds (Speed-1 to 4) and five loads (Load-0 to 4) were pre-selected for the 

measurements, which are called Known Speed-Load data used for training the model and some 

data are collected at randomly selected Speed and Load combinations which are called 

Unknown Speed-Load data used for testing the model accuracy.  

Table 1. Fault description and short naming of the data types with labels for the model 

Fault Description Short Name Class Labels 

Fault DE FE 4 class 8 class 

Healthy(NO) NoFault DEOK FEOK 0 0 20 10 

Inner ring ((IR) spall of 2mm(S1) IRSpall DEIRS1 FEIRS1 1 1 21 11 

Inner ring (IR) spall of 3.5mm(S2) IRSpall DEIRS2 FEIRS2 1 1 21 11 

Outer ring (OR) spall of 2mm (S1) ORSpall DEORS1 FEORS1 2 2 22 12 

Outer ring (OR) spall of 3.5mm (S2) IRSpall DEORS2 FEORS2 2 2 22 12 

Rough rolling surface (RR) RRSurface DERR FERR 3 3 23 13 

4� IEEM-CMCNN Architecture for Bearing Fault Classification 

The model is named as IEEM-CMCNN; has input of three channels 1D data, six convolution 

layers, three Fully-connected layers and four or eight output classes. The detail architecture of 

the IEEM-CMCNN is described in the Fig. 3.  
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The input is a three-channel 1D vibration data considering three sensors at three positions. The 

first channel contains the main-sensor data, second channel belongs to the opposite-sensor data 

and third channel for the base-sensor data. Main-sensor for the FE bearing is the sensor at FE 

and sensor at DE is the opposite-sensor; for DE bearing this is reversed accordingly. During 

training the input of IEEM-CMCNN is a fixed-size: 1 x 1000 x 3 vibration data. The one 

dimensional vibration input length is considered as approximately one revolution of the motor 

shaft as described in previous paper [1]. No pre-processing is done on the training dataset. 
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Fig. 3. IEEM-CMCNN architecture for four fault classes 

The three sensor vibration input is than passed through stack of six convolution (Conv) 

layers. At the first layer the filters have very large receptive field i.e. ͳ ൈ ͷͲ�and gradually

reduced sized filters towards higher level thus at final layer filter size become�ͳ ൈ ʹ. The

convolution stride is fixed to ͳ ൈ ͳ�and padding varies from lower layers i.e. ʹͶ ൈ ʹͶ� to

higher layers i.e. ʹ ൈ ʹ�(where the stride and padding size is to capture left/right centre). The

last Conv Layer padding is�Ͳ ൈ Ͳ. The convolution stride and padding in layers are calculated

in way to preserve the most of length of the input of each layer. After first Conv layer one 

batch normalization layer is kept. Each convolution layers are followed Rectified-Linear unit 

Layer (ReLu) to remove the negative value, those followed by Max-Pooling layers (Pool) of 

window size 1x2 with stride 2 and zero-padding.  

The stack of Conv layers is then followed by three fully connected (FC) layers: first FC 

layer has 1024 channels with a ReLu layer, second FC layer has 1000 channels also with one 

ReLu layer and third has same number of channel as number of class. The final layer is soft-

max layer. We compared different architecture of different number of filters after analysing the 

filter activities at each Conv layer: in this work the developed architecture has similar number 

of filters as VGG16 [16]. 

The training was stopped when accuracy is not improving after 3 epochs. 

5� Model Accuracy Analysis 

As discussed in Section-2, most of the literatures considered to classify all data types where FE 

and DE data should be easily detectable. In this work we compare two models: 1) training the 

model for four classes (Model: 4-Class) where location of bearing (DE and FE) is not known to 
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the model and 2) training the model for eight classes (Model: 8-Class) where two bearing 

locations belonged to different classes.   

 The accuracy of the models are also evaluated by testing Unknown speed-load data from 

training bearings and test bearings as well as Known Speed-Load data from test bearing. This 

way, the test data can be divided into three groups: 1) Unknown Speed-Load data from 

Training Bearings (UnSpLd_TrBr), 2) Known Speed-Load data from Test Bearings 

(KnSpLd_TsBr) and 3) Unknown Speed-Load data from Test Bearings (UnSpLd_TsBr). 

 

 
Fig. 4. Test accuracy comparison for 4 Class Model Vs 8 Class Model  

 

Model: 4-Class and Model: 8-Class both has average training accuracy above 99% and to 

evaluate the performance accuracies are checked per class labels.  In Fig. 4 the performance of 

two models are compared for fault sizes and location of the bearings. The labeling of the 

classes is given in Table 1. 

6� Feature Map Analysis  

DL based CM of electric machine has been successfully applied in many researches but in 

general it is still not clear why the fault detections were  made with high accuracy and how the 

network is learning the features from vibration. In a previous work [1], we analyse the first 

Conv layer output by converting them to frequency domain and showed that a significant range 

of frequencies were learned by each filters for each classes. In the paper [11] the authors also 

focused feature visualization with FFT and showed feature distribution for each layer and each 

10 classes using Stochastic Neighbour Embedding (t-SNE). In this work, we focused on 

understanding the how in all convolution layers features are learned and thus the classes are 

separated. 
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Fig. 5. Tasks involed for analysis the feature map of trained IEEM-CMCNN 

 

 One feature visualizing technique in computer vision is to feed the network with large 

amount of dataset and keep track of which images highly activate some neurons, which is 

shown by Girscick et al [17]. We followed similar approach, aiming to understand among 
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number of filters in the convolution layers if certain filters are contributing to learn the features 

comparing other filters of the same layers.   

 The tasks involved to analyse the feature map of IEEM-CMCNN can be described by Fig 5. 

As the trained dataset has different motor operating conditions and two bearing locations in 

first step we define the Data type, so one specific class (i.e. IRSpall) has 4 Speeds times 5 

Loads in total 20 types of data type for both bearing location. Each type of data is feed through 

the trained model and all the feature maps of all the filters of all layers are saved for later 

analysis. Filter activity is measured by calculating the area under the curve of the Pool output. 

In Fig. 6 the Conv output or the feature map of all six layers (left) for one input for DE bearing 

at Speed-4, Load-4 and the filter activity pointing the most active filter in red star at all layers 

for the same input (right) is shown. It is seen that at each layer one filter is highest active than 

others; for example at layer-1, filter-3 is most active among the 16 filters and at layer-6 filter-

338 is the most active among 512 filters. 
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Fig. 6. Convolution output or Feature Map of all layers (left) and filter activity for the same input at all 

layers (right) 

 

In the next step for all data type Filter Activity is checked thus the most active filter (MAF) of 

all data type is known. MAF means for all 128 inputs of a specific data type most of the time 

(i.e. 90% times) one particular filter is always highest active. In Fig.7 MAF for all 20 data of 

for both bearings are shown for four layers. In the similar figure MAF for one test data 

(TsKnLd) is also plotted and it is shown that almost all time MAF for test data and training 

data are same. In this way it can be concluded that for one trained model some certain filters 

are contributing to learn the class features and now these features of MAFs can be examined to 

know if the features are more differentiable for classes and thus fault classification is highly 

accurate. In Fig. 8 extracted feature or Conv output of MAFs for four classes is plotted over 

each other over for 1
st
, 2

nd
 4

th
 and 6

th
 layers and it is observed that from to higher layers the 

classes are becoming more distinguishable and thus easily diagnosable as different class.  
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Fig. 7. MAF for all data type for four layers (1st, 2nd, 5th and 6th) of trained IEEM-CMCNN for 4 classes 
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Fig. 8. Extracted features or Conv output by the MAF relevant to the classes at four layers (1st, 2nd, 5th and 

6th) of trained IEEM-CMCNN for 4 classes  
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The plotted Conv outputs of all classes are of same Speed-Load, that means all the inputs has 

same noise or vibration infused in their data and the different fault classes should have 

different significant pattern after de-noising.  In Fig. 8 we can see that the infused noise in this 

case the healthy or NOFault (in bright green colour) is becoming less and less visible in higher 

layers and the patterns of the fault classes are becoming more visible in higher layers. 

7�  Conclusion 

This work shows that the design criteria for the CNN architecture in previous work can be 

adapted for different test-bench data. The accuracy comparison in section-5 (Fig. 4) reveals 

that both models can detect fault classes with high accuracy for both Training Bearings and 

Test Bearings. The feature analysis explains how in deep layers the model learns the features 

for different classes.  

 

 This work shows the approach of designing the input size for vibration based bearing fault 

detection applied for CWRU dataset also adaptable for IEEM-CMData. The multi-channel 

input design can be considered in other applications where multiple sensors are involved. 

Feature analysis shows that how features are learned from noisy data similar like computer 

vision where it is known that lower layers detect the low-level features like edges, dark spots 

and high-level features like shape, object are learnt in the higher layers. It shows in vibration 

based detection the lower layers are de-noising the data and in higher layers the pattern of the 

vibration curve which is becoming trainable for the classifier or final layer with high accuracy. 

This analysis approach can be implemented in different vibration based problems and number 

and thus sizes or numbers of filters in each layer can be analyzed to optimize the model 

architecture. 
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