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Abstract 

A scalable and rapidly deployable fault detection framework for building heating systems 

is presented. Unlike existing data-intensive machine learning approaches, a  

SARIMAX-based concept was implemented to address challenges with limited data 

availability after commissioning of the plant. The effectiveness of this framework is 

demonstrated on real-world data from multiple solar thermal systems, indicating potential 

for extensive field tests and applications for broader systems, including heat pumps and 

district heating. 
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1 Introduction 

From 2019 to 2023, LoRaWAN-based temperature sensors were installed to monitor the outlet 

of approximately 450 building solar thermal systems [1]. We developed a rule-based algorithm 

(RBA) for fault detection and diagnosis (FDD) by leveraging extensive operational expertise and 

achieved around 95% accuracy. However, the RBA faced scalability issues due to the variations 

in plant characteristics, dependent on type of installation or control strategies amongst other 

factors, that cannot be captured with just one sensor per plant. While it meets practical 

requirements, our current goal is to develop a complementary data-driven algorithm capable of 

rapid fault detection (FD) across various installations, and potentially extendable to heat pumps 

and district heating systems. This work presents the results of the  

first proof-of-concept. The ability of machine learning (ML) algorithms for FDD in building 

HVAC systems especially solar thermal systems is well documented [2–9]. These studies 

employed extensive process-history data from multiple sensors, simulation data, and used 

complex models such as random-forest-regression to detect numerous faults and in certain cases, 

diagnose them. We also attempted to train ML models using results of the RBA but were 

hindered by a lack of labeled data representing ground truth and the intrinsic limitations of 

training ML models to replicate the RBA [10]. Instead, we propose a novel approach utilizing a 

time series forecasting model that strikes a balance between scalability and minimal data 

available post-commissioning, facilitating preliminary FD using only the single data-point per 

installation. 
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Fig. 1. Examples for different scenarios that may occur in a solar thermal plant.1 

Fig. 1 shows the solar output temperature for four different installations under similar 

environmental conditions. For example, scenario a and scenario b: A monotonic, concave 

temperature increase over a period until a rapid temperature change is observed due to cloud 

cover or peak load, etc. Scenario c: A completely monotonic, concave temperature curve until 

sunset or lower solar radiation. Scenario d: A special case where none of the above occurs, 

although there is an initial temperature rise and a fault in the system could be the cause.  

These are just a few examples among many others, including night cooling or stagnation in solar 

thermal systems, for which the reader is referred to previous work by the authors [1].  

Different types of systems will behave differently due to their design and control measures for 

similar ambient temperatures and global irradiance. A single model trained on all data will be 

limited in predicting failures for all plants. We want to explore an approach that uses minimal 

and readily available historical data from a plant to be implemented for that plant and easily 

integrated into a pipeline for widespread implementation. The concept of implementing this 

pipeline is also discussed in this paper. 

2 Methodology 

The data was collected from solar thermal systems at 10-minute intervals, and for this project 

we have one to two years of data per system. However, since future installations may not have 

extensive historical data, the focus is on developing a model that requires minimal data for fitting. 

So, for the exploratory analysis and visual analysis of the time series we used the entire data set 

of a plant and for the model training and fitting phase we assume 3 past days are enough for 

predicting the target day. This assumption was empirically evaluated by comparing training 

models using past 1 and 2 days and the results are discussed later in this paper. The data handling 

tasks were performed using Python-Pandas v2.1.1, the model fitting and diagnosis was 

performed using the statsmodels v0.14.0 [11] and the pmdarima v2.0.4 [12] package on a laptop 

equipped with an 11th Gen Intel(R) Core(TM) i9-11950H @ 2.60GHz and 32GB Ram. 

Duplicate timestamps were identified and removed, with only the first occurrence retained to 

maintain temporal accuracy. Missing values were addressed using linear interpolation for gaps 

up to four hours, reducing the percentage of missing data from 0.30% to 0.13%, thus preparing 

the dataset for subsequent analysis. 

 
1 Solarvorlauf/Collectorvorlauf = Collector outlet temperature, Umgebungstemperatur = Ambient temperature, Globalstrahlung = 

Global irradiation 
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2.1 Exploratory Data Analysis (EDA) 

Each dataset comprises four key variables: collector outlet temperature (in Celsius), representing 

the temperature of the fluid exiting the solar thermal collectors; ambient temperature (in Celsius), 

which measures the surrounding environmental temperature; cloud cover (in percentage), 

indicating the percentage of cloud coverage, with 100% representing fully cloudy conditions; 

and global irradiation (in Watts per square meter), measuring the total solar radiation received 

per square meter. A statistical analysis was conducted on these variables, calculating their mean, 

minimum, and maximum values, and producing box plot visualizations for the purpose of 

assessing data quality, identifying outliers, and evaluating the spread of values. It was found that 

all sensor readings fell within the expected operational ranges for Switzerland, thereby 

confirming the validity of the dataset for further analysis. The correlation between variables was 

assessed using Spearman's rank correlation coefficient, as shown in Table 1. A strong positive 

linear correlation was detected between collector outlet temperature and both ambient 

temperature and global irradiation. The effect of cloud cover was deemed superfluous in the 

context of fitting, given that its influence is presumed to be encapsulated in the global irradiation 

effect. In consideration of the considerable discrepancies in the magnitude of these variables, a 

scaling process was undertaken to ensure a mean of 0 and a standard deviation of 1. 

Table 1. Correlation between collector output and other variables 

 Dependant ↓ / Independent → Cloud 

Cover 

Ambient 

Temp. 

Global 

Irradiation 

Entire data set Collector outlet temp.  -0.21 0.78 0.82 

3 days subset Collector outlet temp. -0.21 0.92 0.87 

2.2 Model Training 

Prior to establishing the production pipeline, the Box-Jenkins methodology was utilized to 

ascertain, quantify and diagnose the model. The identification of the three-day time series was 

conducted through the application of additive decomposition, with the resulting data for a single 

set illustrated in the Fig. 2 below. Despite the absence of an overall trend, which was anticipated 

for solar thermal collectors, pronounced daily seasonality was discernible.  

 
Fig. 2. Additive decomposition of the 3-day training data set 

It was determined that a Seasonal Autoregressive Integrated Moving Average with Exogenous 

Variables (SARIMAX) model would be the most appropriate means of capturing the identified 

seasonal patterns and relationships between variables. An Augmented Dickey-Fuller (ADF) test 

was performed to check for stationarity. The results are shown in Table 2, with a single seasonal 
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differencing applied. Significant reduction in the ADF-statistic with the seasonal differencing 

informed the decision to use single differencing for the seasonality. 

Table 2. Results of an Augmented Dickey-Fuller test for stationarity 

Series ADF-statistic p-value 

Original  -3.8 0.002 

First Difference -2.9 0.04 

Seasonal Difference -5.5 1.6e-06 

 

Model parameters were further refined using the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots, which informed the selection of a first order 

autoregressive (AR) model. The ACF and PACF plots for the training data, plotted for 5-hour 

lags (equivalent to 30 lags for 10 minute resolution data), show a clear seasonal pattern. This 

seasonality is evident from the cyclical nature of the ACF plot, while the PACF plot shows a 

significant cut-off after the first lag. 

 

 
Fig. 3. ACF and PACF plots for training data set 

These initial estimates were used as a basis for parameter tuning by grid search, using the 

pmdarima package to automate the selection of an optimal SARIMAX model based on 

minimizing the Akaike Information Criterion (AIC). The refined SARIMAX model was then 

applied to predict the outlet temperature for a given target day, using solar radiation and ambient 

temperature forecasts as exogenous regressors. The model's prediction was evaluated against 

actual measurements using the Root Mean Squared Error (RMSE) criterion, and the target day 

was classified as either a 'fault day' (F-Day) or a 'no fault day' (NF-Day) based on predefined 

accuracy thresholds (10 K in our case). This process was integrated into a machine learning (ML) 

pipeline designed to run once a day for each plant. For each iteration, the last three NF-days were 

used as the training data set for the SARIMAX model, ensuring continuous adaptation to 

changing conditions. 

The methodology described above is illustrated in the framework shown in FIGURE. In this 

framework, the user first defines a training dataset consisting of as few as three consecutive NF-

days. This data set is used to fit the SARIMAX model, which generates predictions for the 

following day. If the predicted and observed values for the target day are sufficiently close, the 

day is labelled an NF-day, otherwise it is labelled an F-day. The training dataset is then updated 

with the latest NF-days to ensure that the SARIMAX model is always trained on the latest 

operational data. In practical applications, this loop is run once a day for each sensor, and the 

initial training data only needs to be defined once for each sensor. 
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Fig. 4. Exemplary framework for implementing the MLA pipeline in the production system of industry 

partners 

 

Results of this approach are shown in the next section. 

3 Results 

To facilitate concise presentation, the results presented here are from a single plant that exhibited 

the most stable performance, characterized by minimal NF-days. This allows effective model 

validation. A manual review of all historical data to identify NF-days would be impractical, and 

the limitations of the ground truth are discussed in the Introduction section. The results of the 

various tests, in which the dataset lengths were either 2 or 3 days, demonstrate the performance 

across different types of days selected to represent variations in global irradiation and ambient 

temperature (see Fig. 5). The analysis demonstrates that the automated fitting process identifies 

distinct optimal parameters for the SARIMAX model contingent on the length of the dataset. It 

is notable that while the fitting time of the grid search is shorter with a 2-day dataset, this is 

accompanied by a reduction in RMSE accuracy. In contrast, the 3-day tests, while taking longer 

to fit, tend to yield more reliable predictions, indicating a trade-off between model complexity, 

accuracy, and computational efficiency. These findings highlight the necessity of meticulously 

determining the optimal dataset length to achieve a balance between the necessity for a robust 

model performance and the practical considerations of fitting time and computational resources.  

 
Fig. 5 Summary of hyperparameter search and results for various test data sets 
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Fig. 6 and Fig. 7 illustrate the iterative deployment of the ML pipeline designed to analyze three 

target days, utilizing temperature data from their preceding three NF-Days for training. The 

autofitting of the SARIMAX model is employed in this context. In Fig. 6, all three forecasted 

days are classified as NF-Days and subsequently appended to the NF-Day list, which is then 

utilized for further model fitting and refinement. Conversely, in Fig. 7, the algorithm effectively 

identifies F-Days, which are characterized by significant deviations from the expected behavioral 

patterns of the system. Such deviations may arise due to various factors, including faulty 

hydraulic configurations, suboptimal controller settings, inefficient pump operations, or adverse 

environmental conditions. While diagnosing these anomalies was beyond the scope of the 

current algorithm, it is critical to acknowledge that some deviations could be attributed to rapidly 

fluctuating global irradiation, often influenced by cloud cover dynamics. The complexity of 

SARIMAX model fitting underscores the necessity for rigorous evaluation and validation of the 

model's performance. Selecting appropriate training days is a critical step that requires expert 

judgment to ensure the representativeness and relevance of the data utilized. The expert selection 

process helps mitigate potential biases and enhances the model's capacity to generalize across 

different operational conditions. Future enhancements could involve implementing the algorithm 

primarily on days characterized by minimal cloud cover to reduce variability in the data. 

Additionally, adjusting the weights of exogenous variables within the SARIMAX model fitting 

could further improve the model's responsiveness to external influences. Furthermore, exploring 

alternative algorithms that better capture the effects of rapidly changing global irradiation 

remains a valuable avenue for future research, although it lies outside the current study's 

objectives. 

 
Fig. 6. Results for three iterations of the ML-Pipeline on non-cloudy days in August for plant ST4048 
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Fig. 7. Results for three iterations of the ML-Pipeline on cloudy days in June for plant ST4048 

 

For the quantification of the results, a confusion matrix was constructed for various tests, 

utilizing subsets of the entire data that predominantly contained NF-days, as identified by field 

experts. This approach was necessary since ground truth verification could not be conducted 

otherwise, and the datasets lacked a specific variable to decisively classify a day as either F-day 

or NF-day. 

The results, summarized below, reveal that the autotuned SARIMAX model underperformed 

when compared to the manually tuned model, which used fixed parameters across all iterations. 

The autotuned model tended to falsely identify more F-days, indicating higher rates of false 

positives, while the manually tuned model with fixed order exhibited better consistency and 

fewer misclassifications. This highlights the challenges in automating model tuning and the 

importance of expert input, particularly when ground truth data is not readily available for 

validation. 
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Fig. 8. Confusion matrix results for various tests. Clockwise: (a) SARIMAX(1,1,1)(1,1,0)[144] for  

10 cloudy days, (b) Autotuned for 20 mixed days, (c) SARIMAX(1,1,1)(1,1,0)[144] for 20 cloudy days , 

(d) Autotuning for 10 cloudy days 

4 Conclusion 

This study has demonstrated the effectiveness of a SARIMAX-based framework for fault 

detection in solar thermal systems that uses minimal historical data while still providing reliable 

results. By incorporating solar irradiance and ambient temperature as exogenous variables, the 

proposed model successfully adapts to dynamic operating conditions with only three fault-free 

days required for training. This makes the solution scalable and applicable to installations where 

limited data is available after commissioning. 

Automated model updating through a machine learning pipeline further enhances the system's 

ability to adapt to changing conditions with minimal recalibration. This lays the groundwork for 

practical applications not only in solar thermal systems, but also in broader systems such as heat 

pumps and district heating, which can benefit from this streamlined approach. 

Future work should focus on extending the framework to other heating systems, including more 

diverse test environments, refining the accuracy of error detection, and incorporating additional 

exogenous factors such as collector orientation and refined weather data filters. The results of 

this study highlight the potential for a scalable, low-data solution to monitor and optimize 

building heating systems, contributing to their overall efficiency and reliability. 
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