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Abstract. Machine Learning (ML) has a strong potential to improve the performance and 
effectiveness of several technologies and processes. In recent years, ML has gained in im-
portance, primarily due to its matchless success in image recognition and computer games. 
These ML accomplishments have motivated to transfer and adapt its algorithms and mod-
eling methods to most scientific disciplines. For instance, in mechanical engineering, ML 
is coming to hold a crucial position ranging from value chain optimization (production) to 
substitution of complex simulation models (research and development). In the case of tra-
ditional research and development approach, the analysis and optimization of a process are 
implemented according to the understanding of the governing mechanisms described by 
physical and mathematical rules. On the contrary, the intelligence of the ML method origi-
nates from the extraction of trends and laws based on data patterns, which produces sur-
prisingly good results in many cases. However, it is not entirely evident why it performs so 
well. One of the most challenging mechanical engineering topics is the improvement of the 
Internal Combustion Engine (ICE) towards higher efficiency and lower negative impact on 
the environment. ICEs are very complex systems, which involve high-speed reciprocating
motions, transient gas flow and combustion chemistry. Thus, the application of ML meth-
ods for ICEs opens new perspectives regarding the modelling, control and maintenance. 
These topics are addressed in detail in the course of this paper, based on the most relevant 
published results found in the literature, to provide an overview to the actual research and 
development of ICE using ML methods.

Keywords: Machine Learning; Mechanical Engineering; Internal Combustion Engines; 
Modelling; Control; Predictive Maintenance

1 Introduction
Internal combustion engines will maintain their position as major power source during the com-
ing decades, particularly for heavy-duty applications [1, 2]. Future internal combustion engines 
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have to comply with tightening legislative emission-limits, high fuel-energy conversion-effi-
ciency, affordable prices and customer requirements. To reach this target, engine researchers 
worldwide are working on innovative exhaust aftertreatment systems, alternative combustion 
processes, bio- and renewable fuels, lightweight materials, modern lubricants and advanced man-
ufacturing processes. Within the development of innovative combustion processes (research fo-
cus of Gas Engine Laboratory at Karlsruhe University of Applied Sciences) mainly experimental
(mostly at the engine test bench) and numerical investigations (0D, 1D and 3D-CFD) are per-
formed. Engine tests are expensive (costly metrology, etc.) and very time-consuming. Moreover, 
numerical simulations are very dependent on the validation of the implemented physics-based 
models and necessitate in many cases a large computational capacity. Considering this facts, 
different alternative approaches that enable saving costs, time and computational power are re-
quired. One of the possible solutions that has been increasingly used in recent years is machine 
learning. 
Machine learning is a branch of knowledge dealing with training computers to forecast output 
values or to classify things without having been explicitly programmed for such function. Ma-
chine learning success in many areas like image/speech recognition, effective internet search, 
self-driving cars is mainly lead by the availability of huge datasets. Machine learning methods 
can be categorized into two main groups: supervised and unsupervised algorithms, as shown in 
Figure 1, which depicts some of the most used machine learning algorithms. 

Figure 1. Classification of the most common machine learning algorithms

The methods marked in bold in Figure 1 are the methods that have been used the most in recent 
studies dealing with internal combustion engines, which are collected and analyzed within this 
paper. These works are classified within this paper depending on the intended use of machine 
learning into three categories: Prediction of engine operation parameters and emissions, anomaly 
detection and predictive maintenance, and real-time engine control. These three topics are cov-
ered throughout this paper in detail.
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2 Prediction of Engine Operation Parameters and Emissions

Many studies [3-18] have demonstrated that engine combustion associated parameters and emis-
sions can be predicted accurately using neural networks over a wide range of operating condi-
tions, given that the training data provides good knowledge of the system’s behavior. The com-
bination of fast-computational time and the network’s ability to analyze broad non-linear prob-
lems can potentially replace expensive exhaust gas sensors (FID, Gas Chromatograph, etc.) and 
physics-based, computationally intensive engine modeling approaches. Multi-Layer Perceptron 
(MLP) is a conventional artificial neutral network (ANN) structure that is commonly used for 
the prediction of engine operating parameters and exhaust gas components. MLP consists of 
input, hidden and output layers, as seen in Figure 2 on the left.

Figure 2. Structure of MLP with two (as example) hidden layers (left), Structure of Perceptron (right)

As shown in Figure 2 on the right, each input is assigned to a weighting factor, representing the 
importance of the input factor given by the model when predicting the output. Activation func-
tions are employed in the hidden and output neurons, allowing mapping the non-linear relation-
ships between outputs and inputs. For the model training, MLP uses among others gradient de-
scent backpropagation algorithm, where the goal is to minimize the modeling error, meanwhile 
the weights between neurons are gradually adjusted. Usually, the network training takes place 
using the Levenberg-Marquardt (LM) backpropagation algorithm, known for high computational 
efficiency. LM algorithm is a curve-fitting method for solving nonlinear least-squares problems. 
LM combines the two minimization algorithms gradient descent and Gaussian-Newton to mini-
mize the sum of the squared errors between the fitted model function and the experimental data
[19]. MLP with the weighting approach can also be used to have an insight on the dependency 
of the model output on the input parameters. As an example, the authors in [20] analyzed the 
relative importance of the in-cylinder parameters affecting the NOx and HC model output by 
extracting the saved weights from the trained network. The results yielded that both HC and NOx

were commonly dependent on the engine load and IMEP. The model showed a significant de-
pendency of the NOx emissions on the peak pressure in the combustion chamber, which is phys-
ically reasonable. Higher peak pressures in the combustion chamber are associated with high 
charge temperatures, which result in turn in a high temperature oxidation of the diatomic nitrogen 
in the combustion air and the formation of “thermal” NOx. Further studies demonstrating the 
success of artificial neural networks in predicting and modeling of engine-operation associated 
parameters and emissions are summarized in Table 1. For these studies, the statistical efficiency 
of the models lies between 94% and 99.9%.  It is important to notice, that MLP with backprop-
agation is the most frequent encountered machine learning approach in the field of the research 
and development of internal combustion engines.
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Table 1. Summary of MLP applications for the prediction of engine operation characteristics and 
emissions found in literature

Further neural network concepts/architectures have 
been used in other studies. Taghavi et al. [21] con-
sidered in addition to the MLP network the non-lin-
ear autoregressive network with exogenous inputs 
(NARX) as well as the radial basis function (RBF) 
network for the prediction of start of combustion 
(SOC) of a HCCI engine. Input parameters were the 
intake mixture characteristics (Air-Fuel-Ratio, 
EGR, intake mixture temperature) as well as the en-
gine speed. The NARX algorithm has, depending on 
the usage (training or prediction) two structures: The 
series-parallel (or open loop) and the parallel (or 
closed loop) architectures. The two network archi-
tectures are shown schematically in Figure 3.
The series-parallel architecture is used for training: 
the prediction at time-step ݐ + 1 is provided based 
on real input and output values at the current time 
step ݐ, as well as those from the previous ݊ time steps, as shown in Eq. 1. The pure feedforward 
architecture of the series-parallel (open-loop) structure is applied during training due to the fast 
static backpropagation [22]. By providing the real input-output pairs during training, the model 

Figure 3. NARX networks architectures
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is able to make future prediction with excellent accuracy. After training, the model produces a 
final set of adjusted weights, which minimizes the error between the predicted and the true output 
values. The adjusted weights together with the activation functions approximate the nonlinear 
mapping function F in Eq. 1. During the prediction stage, the open-loop structure is converted to 
a closed-loop architecture. Instead of using the real output when making future prediction (time 
step t+1), the trained model takes the output predicted by itself from the current time step as 
input, as well as those from the previously n time-steps, as shown in Eq. 2.

Additionally, Taghavi et al. [21] applied the radial basis function (RBF) networks also for pre-
dicting the SOC using the same input parameters as in the case of the NARX network. The RBF 
network typically uses only an input layer, a single hidden layer and an output layer [23], as 
shown in Figure 4 on the left.

Figure 4. RBF network architecture (left), Schematic description of data dimensionality increase enabling 
linear separation (from 2D to 3D) (right)

The RBF network is shallow and its behavior is strongly influenced by the nature of the special 
hidden layer, which performs a computation based on a comparison with a prototype vector [23]. 
The structure and computations performed in the hidden layer are the key to the power of the 
RBF network. Here, a hybrid calculation involving two stages takes place. Within the first stage, 
the linear separability should be ensured: If needed, a projection of the original data points into 
a higher dimensionality, so that they become linearly separable, is performed. This is based on 
the Cover’s theorem on separability of patterns [24]. For a simplified understanding, Figure 4 on 
the right shows this step schematically. The second stage is the RBF (Radial Basis Functions) 
computation, which is based on the comparison of the input units തܺ with the prototype vectors 
ρത௜ in the hidden layer units according to the equation (3) [23].

݄௜ = ߮௜( തܺ) = exp ቆെ
ԡ തܺ െ ρത௜ԡଶ

2 ௜ଶߪ.
ቇ

݅ א {1, … ,m }

(3)

ݐ)ොݕ + 1) = ܨ ቆ
,(࢚)࢟ ݐ)ݕ െ 1),… , ݐ൫ݕ െ ݊௬൯,ݐ)ݔ + 1),

ݐ)ݔ,(ݐ)ݔ െ 1),… , ݐ)ݔ െ ݊௫)
ቇ (1)

ݐ)ොݕ + 1) = ܨ ቆ
,(࢚)ෝ࢟ ݐ)ොݕ െ 1),… , ݐො൫ݕ െ ݊௬൯,ݐ)ݔ + 1),

ݐ)ݔ,(ݐ)ݔ െ 1),… , ݐ)ݔ െ ݊௫)
ቇ (2)
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m is the total number of the hidden units. Each of these m units is created to have a high impact 
on a particular cluster of points, which is closest to its prototype vector ρത௜ [23]. Therefore, m can
be regarded as the number of clusters used for modeling, and it represents an important hyper-
parameter available to the algorithm [23]. Each unit has a bandwidth ௜, which is often the sameߪ
for all units with the different prototype vectors [23].  After the RBF calculation in the hidden 
layer, the outputs from the RBFs are weighted and summed by a simple connection to the output 
layer. The values of the weights need to be learned in a supervised way, dealing with the specific 
studied case [23]. On the contrary, the hidden layer is trained in an unsupervised way [25]. This 
involves several parameters such as the prototype vectors, the bandwidths and the number of 
hidden neurons m. Elaborate description about the determination methods of these parameters 
can be found in [23]. In comparison to MLP and RBF, the NARX network featured a better 
prediction accuracy, reaching R = 0.99933 [21]. 

Another machine learning process used for 
the prediction of engine-operation related pa-
rameters is the Ensemble modeling.  For the 
prediction of the performance as well as effi-
ciency of an engine converted from the diesel 
CI to the natural gas SI combustion process, 
Liu et al. [26] applied ensemble methods 
(bagging and boosting) and compared their 
prediction performances. The model output 
was the indicated mean effective pressure 
(IMEP). Input parameters were spark timing, 
fuel/air-ratio and engine speed with overall 
153 sets of data (122 for training and 31 for 
testing). “Unity is strength”: This statement 
describes in three words the core idea behind 
the strength of ensemble methods in machine 
learning. Such methods improve the predic-
tive performance of a single model by train-
ing multiple models and combining their pre-
dictions [27]. The base models building the 
ensemble model are “weak” learners, which 
feature either a high bias or much variance. 
These are combined within the ensemble 
method in such a way that they build a strong 
learner. The combination strategy of the base 
learners enables to group the ensemble methods in two main categories, depending on how the 
base learners are generated [28]. The first category is “bagging”. Here the individual learners are 
created independently and their generation can be parallelized [28]. The second category, called 
“boosting”, creates individual learners sequentially in a very adaptive way [28]. Both ensemble 
methods are shown schematically in Figure 5. For the first step of the bagging algorithm, multi-
ple bootstrap samples (data subsets) are created. These subsets are almost independent datasets 
created from the original one using random selection [26]. It is important to notice, that the size 
of the original dataset should be large enough compared to the size of the bootstrap samples so 
that they are “sufficiently” independent. Subsequently, one “weak” learner (usually the same) is 

Figure 5. General structure of bagging (top) and 
boosting (bottom) ensemble algorithms
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fitted for each bootstrap sample. The predictions of the base learners are then combined to the 
final prediction of the ensemble model in some kind of weighting process [27]. The combination 
of the base learners within the bagging method enables the reduction of the variance compared 
to the variance levels of the single base learners [28]. Therefore, base models with low bias but 
high variance are more suitable for bagging. Concerning the boosting algorithm, it is not suitable 
for parallelized computation. Boosting starts with training a first base “weak” learner and then 
adapt the distribution of the training data according to the output of the base learner such that 
incorrectly classified samples will have increased consideration from subsequent basic learners
[28]. In other words, each new base learner focuses on the most difficult samples (wrongly pre-
dicted by the previous learner), so that we get a strong ensemble model with low bias. Hence, 
base learners with low variance but high bias are suitable to be combined within boosting en-
semble methods. Liu et al. [26] found that boosting outperformed bagging, can deal with data 
set with uneven distributed conditions among the operating range, and provided a high accuracy 
prediction (R2 = 0.9623) even for low frequency cases, which are poorly presented in the original 
data set. 

3 Anomaly Detection and Predictive Maintenance

With recent developments, powertrain systems are becoming more complex. Understanding this
complexity and dealing with associated particular problems/failures requires evolved methods.
New detection methodologies involving machine learning and predictive diagnostics have be-
come the need of the hour [29]. In this frame, Farsodia et al. [30] proposed an approach com-
bining unsupervised learning and clustering to detect anomalies, which may occur in engines or 
after-treatment-systems (ATS). To validate their strategy, Farsodia et al. [30] addressed the ex-
ample of the backpressure problem occurring in the diesel particulate filter (DPF) of an automo-
tive diesel engine. Figure 6 depicts schematically the approach proposed by Farsodia et al. [30].

Figure 6. Schematic description of the approach proposed by Farsodia et al. [30] for anomaly detection

As shown in Figure 6, the pressure values before and after the DPF are measured and clustered
in a supervised way using the k-means clustering algorithm. Here, the data set will be distributed 
into “k” clusters. Each cluster has a centroid, which is defined by averaging (taking mean) of the 
assigned data. First, centroids are determined randomly. Then, data points from the dataset are 
arranged to the nearest available centroid. The positions of the centroids change within an opti-
mization process until further movement of centroid is not possible. The algorithm is one of the 
most commonly used techniques for clustering purposes, as it quickly finds the centers of the 
clusters. Detailed specifications to the k-means clustering algorithm can be found in [31]. In a 
further step, a classification MLP is trained with the defined classes (clusters) from the super-
vised clustering step and the associated data. The trained classification MLP is then used in a 
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third step to predict in an unsupervised manner the operating mode of the DPF. For a better 
monitoring of malfunction cases, Farsodia et al. [28] defined a “severity factor”, which enables 
a time dependent tracking of the DPF functionality degradation. The “severity factor” is derived 
based on the relative density of data (e.g. malfunction, backpressure, etc.) with respect to total 
available data points [30]. This “severity factor” gives a pre-warning about any component’s 
malfunction, which will enable the end user to take necessary preventive measures [30]. 

In a further case, Farsodia et al. [30] presented a methodology involving the weighted k-nearest 
neighbor (w-kNN) algorithm to predict the temperature shoot-up events in a DPF, which are 
harmful for the ATS from thermal aging and safety perspectives. kNN is among the simplest 
statistical learning tools in density estimation, classification as well as regression and known to 
be trivial to train and easy to code [32]. The difference between the standard and the weighted 
kNN is that in the weighted approach the prediction of a test point is more depended on the 
nearest observations [30]. In other words, the k points within the neighborhood of the test point 
do not contribute equally to the final decision of the test point. Indeed, the closer an observation 
is from a test point, the more it contributes to its classification. For deeper insight into the w-
kNN-methodology, please refer to [33]. After defining the most probably governing parameters 
on the temperature shoot-up event (engine speed, torque, airflow, HC injection quantity, etc.), 
Farsodia et al. [30] classified the training dataset, containing temperature shoot-up events, into 
three different risk categories: “high”, “medium” and “low”, using w-kNN within a supervised 
learning process. Category “high” risk implied that there are very high chances that there will be 
temperature shoot-up post DOC. When testing the trained model with test data from the same 
vehicle, the model released a warning signal about 60 seconds before the temperature shoot-up 
event occurred. The algorithm derived from the data is “smart” enough to detect the difference 
between the high-end temperatures and shoot-up events. However, the excellent beforehand pre-
diction performance was not precisely explained by the authors. Especially, the relationship be-
tween the algorithm behind the occurrence of the warning signal and the previous classification 
step was not discussed.

For a 2.4L diesel excavator engine, Jang et al. [34] proposed also an anomaly detection model,
which is depicted schematically in Figure 7. The main idea of the proposed approach is to extract 
abundant features from gathered data using an autoencoder and then to distinguish between nor-
mal and abnormal operating conditions with help of a one-class support vector machine 
(OCSVM). First, data was collected from 123 different sensors at high frequency (one value 
every 0.1 s) over 12 days. Due to the large learning dimension, raw collected data cannot be 
applied to the autoencoder. Therefore, the authors used statistical values instead (median, vari-
ance, deciles, etc.). This enabled the reduction of the data amount and the expression of data 
characteristics more prominently. In a second data-dimensionality-reduction step, the autoen-
coder is applied to the derived statistical indicators. Autoencoders are neural networks that can 
automatically (unsupervised) learn useful features from data [35]. Autoencoders work by com-
pressing the data into a latent-space representation also known as bottleneck, and then recon-
structing the output from this representation. Jang et al. [34] used compressed features from the 
latent space of the autoencoder network as input for the classification algorithm, which is the 
OCSVM, which is used in the context of pattern classification to discriminate between two clas-
ses [36]. More details to support vector machines can be found in [37]. Ten days of “healthy” 
measurement data were used to train the OCSVM model. The anomaly classification perfor-
mance was evaluated using data from two days, where faulty events were present. The model 
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accuracy reached up 73%. However, the model achieved an excellent recall score with 83%, 
indicating the model reliability to ignore false alarms.

Figure 7. Schematic description of the approach proposed by Jang et al. [34] for anomaly detection

In a classification task, the positive or negative results are insufficient without explaining the 
classifier’s decision-making. Therefore, Jang et al. [34] used Local Interpretable Model-agnostic 
Explanation (LIME) to get more in-depth interpretation regarding the most critical factors con-
tributing to the classification results. LIME is an algorithm for providing interpretable explana-
tions for the non-interpretable (black box) ML models such as neural networks. An in-depth
explanation to the LIME approach can be found in [38].

4 Real-Time Engine Control

Conventionally, ICEs control is based on map-calibrations tuned by full factorial or design of 
experiments processes. To reach engine efficiency targets, manufacturers are increasing the 
number of actuators [39], leading to an increase in the calibration design space and thus affecting 
the real-time capability of the control unit, especially for transient operating conditions. Thus,
new control techniques, which can better deal with increasing actuators number, are developed.
In this context, Egan et al. [40] introduced a hybrid modelling approach involving the non-linear 
model predictive control (nMPC) in combination with static and dynamic (time-dependent be-
havior) artificial neural networks. nMPC is an advanced control strategy that has the greatest 
acceptance in the industry, because it provides an intuitive approach to the optimal control of 
systems subject to constraints [41]. Nevertheless, it has its drawbacks, mainly the large amount 
of calculation required, since an optimization problem is being solved at every sampling time 
[41]. Thus, non-linear MPC use for ICE is usually limited due to the short period available be-
tween engine cycles (~25ms at 5000 rpm) and the limited computational power of automotive 
control units [42]. Alone the evaluation of non-linear engine-models and its linearization take 
about 60%-75% of the total computational time per nMPC iteration [41]. Taking into consider-
ation that neural networks can computationally efficient capture non-linear behavior and have 
the ability to be linearized in minimal time [40], Egan et al. [40] proposed to replace traditional 
engine modeling methods by artificial neural networks and use them within the nMPC frame-
work, as shown schematically in Figure 8. Their aim was to accelerate the nMPC processing 
time and thus facilitating its integration into the engine control unit. Egan et al. [40] found that 
the proposed control system successfully controls the investigated engine with tractable compu-
tational load, opening doors for the application of their approach for future Engine Control Units. 
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Figure 8. MPC architecture with ANN as engine modeling approach, approach proposed by Egan et al. 
[40]

5 Summary and Outlook

This paper deals with existing applications of machine learning in the field of internal combus-
tion engine development. Most of the work found in literature handles empirical model building
with the use of artificial neural networks, especially the MLP structure, which is quite suitable 
for mapping non-linear processes occurring in an IC engine. Other structures for modeling and 
predicting engine-related parameters have also been found in the literature, such as the NARX 
and the RBF networks. Further studies considered ensemble methods, which are well suitable 
for modeling engine parameters (especially the boosting algorithm).
In addition to model building, machine-learning methods in the field of combustion engines are 
also used for the predictive maintenance and anomaly detection. Especially, Clustering (k-means 
clustering, k-nearest neighbors, support vector machine, etc.) and “deep learning” (autoencoder, 
convolutional neural network, etc.) methods are used for these purposes. In this process, XAI 
(explainable artificial intelligence) methods (e.g. Local Interpretable Model-agnostic Explana-
tion) were also employed to get more in-depth explanations and interpretations for the machine 
learning model decisions. These methods then ultimately allow a more advanced understanding 
of the engine's behavior.
One more field of machine learning application in the engine development segment is the real-
time engine control. New engine Control systems face the challenge of dealing with growing 
engine complexity and thus increasing computational intensity. In this context, artificial neural 
networks offer the possibility to reduce the computational effort without affecting the number of 
actions to be managed with a given time slot. Indeed, the MLP structure have the advantage that 
it can simply map the engine operation (highly non-linear) and be easily linearized (from non-
linear to linear), which motivates for its integration into existing control systems involving com-
puting intensive optimizers.
However, machine learning also has its drawbacks. One cannot expect any magic from machine 
learning algorithms. Indeed, simple learning programs are unable to learn complex concepts 
from few input data. To deal with this fact, more data and “smarter” algorithms are needed. 
Therefore, researchers are increasing the application of deep learning (DL) methods such as con-
volutional neural networks (CNN) [43], generative adversarial networks (GAN), and autoencod-
ers (AE), which has proven to enable the automatic detection of most significant features during 
the training phase and to exceed the prediction accuracy of the simpler ML models with conven-
tional human-aided feature extraction. Therefore, we expect an increasing use of deep learning 
algorithms within the future research and development of internal combustion engines. 

115



References

1. Zhao, L., Ameen, M., Pei, Y., Zhang, Y., Kumar, P., Tzanetakis, T. and Traver, M.,
“Numerical evaluation of gasoline compression ignition at cold conditions in a heavy-
duty diesel engine”, SAE Technical Paper, No. 2020-01-0778, 2020

2. Xu, Z., Ji, F., Ding, S., Zhao, Y., Wang, Y., Zhang, Q., Du, F. and Zhou, Y., „Simula-
tion and experimental investigation of swirl-loop scavenging in two-stroke diesel engine
with two poppet valves”, International Journal of Engine Research, 1468087420916083,
2020.

3. Danaiah P., Kumar P., Rao Y., “Performance and emission prediction of a tert butyl al-
cohol gasoline blended spark ignition engine using artificial neural networks”. Int J Am-
bient Energy 36:37–41, https://doi.org/10.1080/01430750.2013. 820147, 2013

4. Uslu S., Celik M., “Performance and exhaust emission prediction of a SI engine fueled
with I-amyl alcohol gasoline blends: an ANN coupled RSM based optimization”. Fuel
265:116922, https://doi.org/10.1016/j.fuel.2019.116922, 2020

5. Gürgen S., Ünver B., AltÕn ø. “Prediction of cyclic variability in a diesel engine fueled
with n-butanol and diesel fuel blends using artificial neural network”. Renew Energy
117:538–544, https://doi.org/10.1016/j.renene.2017.10.101, 2018

6. Kara Togun N., Baysec S. “Prediction of torque and specifc fuel consumption of a gaso-
line engine by using artificial neural networks”. Appl Energy 87:349–355,
https://doi.org/10.1016/j. apenergy.2009.08.016, 2010

7. Tasdemir S., Saritas I., Ciniviz M., Allahverdi N. “Artificial neural network and fuzzy
expert system comparison for prediction of performance and emission parameters on a
gasoline engine”. Expert Syst Appl 38:13912–13923, https://doi.org/10.
1016/j.eswa.2011.04.198, 2011

8. Roy S., Banerjee R., Bose P., “Performance and exhaust emissions prediction of a
CRDI assisted single cylinder diesel engine coupled with EGR using artifcial neural
network”. Appl Energy 119:330–340, 2014, https://doi.org/10.1016/j.apenergy. 01.044,
2014

9. Maurya R., Saxena M., “Characterization of ringing intensity in a hydrogen-fueled
HCCI engine”. Int J Hydrogen Energy 43:9423–9437,
https://doi.org/10.1016/j.ijhydene.2018. 03.194, 2018

10. Martínez-Morales J., Quej-Cosgaya H., Lagunas-Jiménez J. et al., “Design optimization
of multilayer perceptron neural network by ant colony optimization applied to engine
emissions data”. Sci China Technol Sci 62:1055–1064, https://doi.org/10. 1007/s11431-
017-9235-y, 2019

11. Hariharan N., Senthil V., Krishnamoorthi M., Karthic S. “Application of artifcial neural
network and response surface methodology for predicting and optimizing dual-fuel CI
engine characteristics using hydrogen and bio fuel with water injection”, Fuel
270:117576, https://doi.org/10.1016/j.fuel.2020.117576, 2020

12. Mehra R., Duan H., Luo S. et al., “Experimental and artificial neural network (ANN)
study of hydrogen enriched compressed natural gas (HCNG) engine under various igni-
tion timings and excess air ratios”. Appl Energy 228:736–754, https://doi.
org/10.1016/j.apenergy.2018.06.085, 2018

13. Ghobadian B., Rahimi H., Nikbakht A. et al. „Diesel engine performance and exhaust
emission analysis using waste cooking biodiesel fuel with an artificial neural network”.
Renew Energy 34:976–982, https://doi.org/10.1016/j.renene.2008.08.008, 2009

116



14. Kapusuz M., Ozcan H., Ahmad J., “Research of performance on a spark ignition engine 
fueled by alcohol e gasoline blends using artificial neural networks”. Appl Therm Eng 
91:525–534, https://doi.org/10.1016/j.applthermaleng.2015.08.058, 2015

15. Aydin M., Uslu S., Bahattin Çelik M., “Performance and emission prediction of a com-
pression ignition engine fueled with biodiesel-diesel blends: a combined application of 
ANN and RSM based optimization”, Fuel. https://doi.org/10.1016/j.fuel. 2020.117472,
2020

16. Akkouche N., Loubar K., Nepveu F. et al., ,”Micro-combined heat and power using 
dual fuel engine and biogas from discontinuous anaerobic digestion”. Energy Convers 
Manag 205:112407, https://doi.org/10.1016/j.enconman.2019.112407, 2020

17. Oguz H., SarÕtas I., Baydan H., “Prediction of diesel engine performance using biofuels 
with artificial neural network”. Expert Syst Appl 37:6579–6586,
https://doi.org/10.1016/j.eswa.2010. 02.128, 2010

18. Cay Y., Korkmaz I., Cicek A., Kara F., “Prediction of engine performance and exhaust 
emissions for gasoline and methanol using artificial neural network”. Energy 50:177–
186, https://doi. org/10.1016/j.energy.2012.10.052, 2013

19. Henri P. Gavin, “The Levenberg-Marquardt algorithm for nonlinear least squares curve-
fitting problems”, Department of Civil and Environmental Engineering, 2020

20. Janakiraman V., Suryanarayanan, S., Saravanan, S., and Rao, G., "Analysis of the Effect 
of In-cylinder Parameters on NOx and HC Emissions of a CI Engine Using Artificial 
Neural Networks," SAE Technical Paper 2006-01-3313, 2006

21. Taghavi, M.; Gharehghani, A.; Nejad, F. Bakhtiari; Mirsalim, M., “Developing a model 
to predict the start of combustion in HCCI engine using ANN-GA approach”. In Energy 
Conversion and Management 195, pp. 57–69, doi: 10.1016/j.enconman.2019.05.01,
2020

22. Huo F., Poo A., “Non-linear autoregressive network with exogenous inputs based con-
tour error reduction in CNC machines”. In International Journal of Machine Tools and 
Manufacture 67, pp. 45–52, doi: 10.1016/j.ijmachtools.2012.12.007, 2013

23. C. C. Aggarwal, Neural Networks and Deep Learning, Springer, 2018
24. F. Samuelson and D. G. Brown, "Application of Cover's theorem to the evaluation of 

the performance of CI observers," The 2011 International Joint Conference on Neural 
Networks, pp. 1020-1026, doi: 10.1109/IJCNN.2011.6033334.P, 2011

25. Faris H., Aljarah I., Mirjalili S., Chapter 28 - Evolving Radial Basis Function Networks 
Using Moth–Flame Optimizer, Handbook of Neural Computation, Academic Press, 
ISBN 9780128113189, 2017

26. Liu, J, Ulishney, C, & Dumitrescu, CE. "Improving Machine Learning Model Perfor-
mance in Predicting the Indicated Mean Effective Pressure of a Natural Gas Engine." 
Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical 
Conference, 2020

27. Sagi O., Rokach L., “Ensemble learning: A survey”, WIREs Data Mining and 
Knowledge Discovery, Volume 8, Issue 4, 2018

28. Zhou Z., “Machine Learning”, Springer, Nanjing, Jiangsu, China, ISBN 978-981-15-
1967-3 (eBook), 2021

29. Stephen M., Machine Learning, Second Edition, 2015
30. Farsodia, M., Pandey, S., and Ganguly, G., “Advance Data Analytics Methodologies to 

Solve Diesel Engine Exhaust Aftertreatment System Challenges,” SAE Technical Paper 
2019-01-5035, doi:10.4271/2019-01-5035, 2019

31. Aristidis Likas, Nikos Vlassis, Jakob J. Verbeek, The global k-means clustering algo-
rithm, Pattern Recognition, Volume 36, Issue 2, Pages 451-461, ISSN 0031-3203, 2003

117



32. K. S. Ni and T. Q. Nguyen, "An Adaptable k-Nearest Neighbors Algorithm for MMSE
Image Interpolation," in IEEE Transactions on Image Processing, vol. 18, no. 9, pp.
1976-1987, doi: 10.1109/TIP.2009.2023706, 2009

33. M. Bicego and M. Loog, "Weighted K-Nearest Neighbor revisited," 2016 23rd Interna-
tional Conference on Pattern Recognition (ICPR), pp. 1642-1647, doi:
10.1109/ICPR.2016.7899872, 2016

34. Jang G-b, Cho S-B. Anomaly Detection of 2.4L Diesel Engine Using One-Class SVM
with Variational Autoencoder, ANNUAL CONFERENCE OF THE PROGNOSTICS
AND HEALTH MANAGEMENT SOCIETY, 2019.

35. Walter Hugo Lopez Pinaya, Sandra Vieira, Rafael Garcia-Dias, Andrea Mechelli, Chap-
ter 11 - Autoencoders, Machine Learning, Academic Press, Pages 193-208, ISBN
9780128157398, 2020

36. G. D. Fraser, A. D. C. Chan, J. R. Green and D. T. MacIsaac, "Automated Biosignal
Quality Analysis for Electromyography Using a One-Class Support Vector Machine," in
IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp. 2919-
2930, doi: 10.1109/TIM.2014.2317296, 2014

37. Suthaharan S., “Support Vector Machine. In: Machine Learning Models and Algorithms
for Big Data Classification”. Integrated Series in Information Systems, vol 36. Springer,
Boston, MA, https://doi.org/10.1007/978-1-4899-7641-3_9, , 2016

38. Peltola T., Local Interpretable Model-agnostic Explanations of Bayesian Predictive
Models via Kullback-Leibler Projections, Machine Learning, Cornell University, 2019

39. Atkinson, C., “Fuel Efficiency Optimization Using Rapid Transient Engine Calibra-
tion,” SAE Technical Paper 2014- 01-2359, doi: 10.4271/2014-01-2359, 2014

40. Egan, D., Koli, R., Zhu, Q., and Prucka, R., “Use of Machine Learning for Real-Time
Non-Linear Model Predictive Engine Control,” SAE Technical Paper 2019-01-1289,
doi:10.4271/2019-01-1289, 2019

41. Bordons C., Garcia-Torres F., Ridao M.A. “Model Predictive Control Fundamentals. In:
Model Predictive Control of Microgrids”. Advances in Industrial Control. Springer,
Cham, https://doi.org/10.1007/978-3-030-24570-2_2, 2020

42. Zhu, Q., Prucka, R., Prucka, M., and Dourra, H., “A Nonlinear Model Predictive Con-
trol Strategy with a Disturbance Observer for Spark Ignition Engines with External
EGR,” SAE Int. J. Commer. Veh. 10(1):360-372, doi:10.4271/2017-01-0608, 2017

43. Gofran T., Neugebauer P., Schramm D., „Feature extraction from raw vibration signal
and classification of bearing faults using convolutional neural networks”, Artificial In-
telligence from research to application, The Upper-Rhine Artificial Intelligence Sympo-
sium UR-AI, 2019

118


