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Abstract. The development of clean vehicles and more specifically electric and
hybrid vehicles relies on the performances of Lithium Ion batteries. More efficient
than all the other battery chemistry in terms of energy density and output power,
these batteries bring hybrid and electric vehicle in line with thermal vehicles.
However, they still suffer from a limited driving range and lifespan, and their
performances can be affected by numerous factors, one of the most important one
being the driving profile imposed by a user.

Prognostics and health management strategies make use of operating data in
order to better understand the ageing mechanisms of Lithium Ion batteries and
to forecast their future degradation trend. In this article, we introduce our method
to predict the Remaining Useful Life of Lithium Ion batteries based on the dataset
published by the Massachusetts Institute of Technology, through the use of low
computational cost machine learning algorithms. Our artificial neural networks
take both historical data and time series representing the driving profile of a
battery as input, and predict with accuracy the Remaining Useful Life of a battery.
Compared to previous approaches in the literature, we obtain reliable and accurate
predictions of the Remaining Useful Life of any battery at any moment in its life
from the observation of only charge and discharge cycle. The importance of driving
data in prognostics and health management strategies of Lithium Ton batteries is
shown throughout this article.

Keywords: Lithium Ion batteries, Prognostics and Health Management, Ma-
chine Learning, Artificial Neural Networks, Feature extraction, Remaining Useful
Life

1 Introduction

In the case of hybrid vehicles (HEV), and even more so in the case of all-electric power-
trains, the on-board energy storage system remains the weak link: very expensive, limited
in driving range, slow to recharge, main cause of over-costs... The challenge for any car
manufacturer wishing to develop a HEV or an Electric Vehicle (EV) is therefore not only
to optimise the electric power-train, both in terms of cost and range, but also to bring the
battery into line with the life of the vehicle. Battery lifetime is therefore a crucial element
for the development of EVs under acceptable cost conditions. Indeed, the battery is the
key component and the most expensive one in a HEV or EV. In this context, the failure
of battery could lead to serious inconvenience, performance deterioration, accelerated
ageing and costly maintenance.

Therefore, the prognostics and health management (PHM) of on-board energy storage
systems, which aims to monitor their health and to predict their degradation trend,
appears to be a crucial element in the development of new battery powered vehicles.
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PHM strategies make it possible to forecast the evolution of the storage capacity of
a battery and to predict its Remaining Useful Life (RUL), which correspond to the
number of charge and discharge cycles it can withstand before reaching its end of life.
That allows to perform maintenance service in advance if necessary, using the past and
current information about battery usage and capacity degradation trend.

The aim of this article is to present a method based on machine learning for the predictive
prognostics of Li-Ion batteries in EV applications. The challenge is to use ageing data
of Li-Ton batteries in order to extract knowledge on the state of health (SOH) of the
batteries. In this paper, we focus specifically on the dataset published in [1] as it is the
largest available and contains extremely valuable data that apply very well to machine
learning techniques. The key contributions are (i) the development of low computational
models based on Artificial Neural Networks (ANN), (i) an online forecasting of the RUL
of batteries, (i) the use of driving data in the predictive model.

The remainder of this article is structured as follows : section 2 is a brief introduction
to related work in the fields of predictive prognostics of Li-lon batteries, section 3 provides
a detailed presentation of the dataset on which we based our work, section 4 focuses on the
developed architecture for RUL prediction based on ANN and feature extraction, section
5 presents all experimental results with a comparison with other approaches found in the
literature and section 6 offers a brief conclusion with a presentation of future works.

2 Background

Concerning Li-Ion batteries, prognostics and health management strategies (PHM) aim
at determining how and when a failure will occur and to give a long term image of the
state of health (SOH) of the battery [2]. This can be done either by observing previous
data acquired through various sensors or by simulating the behaviour of a battery in its
environment thanks to physical models.

In a great majority of papers, PHM of Li-Ion batteries consists in determining their
RUL, which is the number of charge and discharge cycles it can go through before reaching
the End of Life (EoL) criteria. A battery is considered out of use for an electric vehicle
when it has reached a SOH of 80%. The SOH of a battery represents the storage capacity
at a given time compared to its initial storage capacity :

SOH = Qoctwal_ i gopo = Qectual_ 10 (1)

Qnominal Qnominal

Most approaches deal with the prediction of the RUL in terms of cycles. This can be
done either by designing a complete physical model and simulating the behaviour of a
battery, or by focusing on real data taken as input of machine learning models. This latter
type of models makes it possible to forecast the temporal evolution of the battery SOH
using a sliding window approach, or to predict the RUL directly from the observation of
ageing features.

2.1 Model based approaches

Model-based techniques were the first ones to be developed, before massive data acqui-
sition and challenges linked to big data appeared. A model-based approach for the PHM
of a system relies on the establishment of a simulation model according to physical rules
and functioning equations. The aim is to understand and reproduce the behaviour of
a system in order to obtain simulated data that could be exploited, in particular with
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the introduction of disturbances. It implies a complete understanding of the system and
gives a global representation of the different answers to solicitations. Downey et al. in
(3] have modeled the degradation phenomena of active materiel loss in Li-Ion batteries
in order to estimate the battery capacity. The battery was represented by an electro-
chemical model that takes into account heat generation equations in [4]. Zhang et al.
[5] elaborated a comprehensive lead-acid battery model made of seven sub-models each
modeling a physical phenomena. The model estimates internal resistance, terminal volt-
age, internal temperature, SOC and battery capacity using the load current and ambient
temperature.

2.2 Data driven approaches

Data driven approaches for PHM have emerged with the development of industry 4.0 and
massive data acquisition strategies. Real operating data is collected and given as input to
a black box model, that uses past data to forecast the evolution of a system. Operating
data most of the time consists in physical features observed according to time through
different sensors linked to a battery or a battery cell during ageing tests (observation of
current, voltage, internal resistance, temperature...). This results in very large sequences
of data as the cycle life of a Li-Ion battery can reach more than 2000 cycles. All data driven
strategies require a data prepossessing step in order to make operating data compatible
with data driven models. However, there can be a great variety of approaches when
building a data driven predictive model, mainly due to the development of machine
learning algorithms that apply very well to large amounts of data and PHM problematic.
This quick state of the art of data driven approaches separates the different models found
in the literature into two categories : window-based models and early cycle models.

Window approach As explained earlier, operating data of Li-Ion batteries can result
in very larges sequences of data due to their very high lifespan. A common approach for
simplifying the problem is to use a window approach. There are two types of data se-
quences in Li-Ion battery ageing data. The first one are historical data sequences, which
are represented as a function of the number of cycles. For example, SOH is computed at
each cycle, just as internal resistance or charging time. For each of these data sequences,
there is one value for each cycle, and a sequence window is therefore composed of several
consecutive cycles. The second type of data sequence are temporal data, which are rep-
resented as a function of time. Here, operating data is directly acquired though sensors,
and for each cycle, the temporal evolution of several features such as current, voltage
or temperature can be observed. Temporal data represent the real use of the battery. A
window of time sequences can then either be a sample of time series from one cycle, or a
succession of time series that corresponds to several consecutive cycles. Most approaches
deal only with the observation of window of historical data, and especially the SOH.
The evolution of SOH contained in one window makes it possible to forecast the future
degradation trend and therefore to predict the RUL according to the predicted SOH
fade. This method has proved very effective and can be applied to a great variety of ML
techniques [6-10]. However, the main drawback is that the accuracy of the prediction
depends on the size of the window. The larger the amount of historical data, the better
the accuracy. Moreover, very few approaches take advantage of time series.

Early cycle prediction Some approaches mention other RUL prediction techniques
based on features calculated from early cycles data. Severson et al. have computed several
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features from cycle 1 to cycle 100 and applied a linear regression as a supervised learning
technique to predict the cycle life of a given cell. This method also removes the problem of
dealing with temporal or sequential values but requires to use only brand-new batteries,
after cycling them 100 times.

3 Battery ageing data

Throughout the literature, several datasets are often cited and used for data driven
approaches concerning PHM of Li-Ion batteries. The NASA Prognostics Center of Excel-
lence (PCoE) published a massively used dataset for SOH prediction [11]. It consists in
34 batteries tested under different charge and discharge conditions until the EoL criteria
is reached. More batteries were tested in this dataset without reaching end of life though,
which limits the applications.

The NASA PCoE also published a dataset that consists in testing 4 batteries with
random charge and discharge currents during 1500 cycles [12]. After 1500 cycles, charac-
terisation cycles are performed in order to evaluate the evolution of the batteries’ SOH.

An other dataset published by the Sandia National laboratories aims at studying the
effect of Depth of Discharge (DoD), load current and temperature on battery degradation.
86 cells of three different chemistries (LFP, NMC and NCA) are tested in this study.

Some papers also mention custom battery ageing datasets [13]. The main drawback
when testing batteries for health prognostics is that EoL criteria need to be reached.
Considering the performances of Li-lon batteries, this may take a long time and require
a lot of resources for testing a representative number of cells. To overcome the resource
and time problem, a paper also shows the use of training data generated with a physic-
based model of Li-Ton battery [14].

Even though all this data is of great interest, we decided to base our approach on
a new dataset described in [1] (with supplementary information in [15]). This dataset
gathers more information than all earlier mentioned datasets, to our knowledge, as it
offers complete operating data of 124 cells tested from beginning to EoL.

3.1 MIT dataset

In [1], the department of chemical engineering of the Massachusetts Institute of Tech-
nology, in collaboration with Toyota engineering and with the Department of Materials
Science and engineering of Stanford university, have built the largest available dataset
regarding Li-Ion battery ageing. This dataset is a highly valuable source of information
as very few public data can provide that much resource. The cells that were used for
testing are LFP/graphite cells from A123 manufacturer, model APR18650M1A. These
cells have a 3.3V nominal voltage and a 1.1Ah nominal capacity. They can provide dis-
charge currents up to 30A.

The cells were tested in a 30°C chamber and cycled with an battery tester from Arbin
manufacturer. The batteries are always discharged at a constant current of 4.4A. The
most important factor in the tests is the charging policy. Batteries are charged following
a multi-steps constant-current /constant-voltage (CC-CV) policy which makes it possible
to reduce the charging time. By applying a fast charging policy, batteries are tested under
conditions that are close to the real use of batteries in an EV. Indeed, one of the main
challenges that EV are facing is the charging time, which should be as short as possible
without damaging the cells.
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As explained in section 2.2, there are two different kind of data sequences in this
dataset : historical data sequences and times series.

Figures 1, 2 and 3 are representations of time series for one given cycle (the charging
pattern, evolution of external temperature during one cycle, discharge voltage...) and

figures 4, 5 and 6 show the global evolution of a given historical data sequence over the
full life cycle of a battery.
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The available dataset offers a considerable amount of ageing data from the first cycle
of each cell to the EoL. Every cycle gives information about ageing signs and SOH that
should be taken into account. Both historical data and time series contain information
about the RUL and SOH of the battery at a given time, but they need to be pre-processed

and combined in order to highlight the factors that most represent the degradation trend
of a battery.

3.2 Exploitation of driving data

As detailed in section 2.2, most approaches are based on the exploitation of SOH historical
curves only to forecast the future SOH degradation trend [7,16,13]. We see two major
drawbacks in designing a SOH forecasting model based on previous SOH data only. First,
as all available data consists of experimental data built from laboratory cell tests, the
degradation trend is quite steady. Indeed, in the MIT dataset, cells are discharged at a
constant current rate, identically throughout their whole cycle life. Similarly, the charging
protocol does not vary from beginning to end of life. This results in SOH degradation
patterns that are very similar from one battery to another, as can be seen in fig 4.
Therefore, forecasting future SOH degradation trend from past SOH data is simplified
and can be implemented with most machine learning algorithms.

Secondly, studying the global trend of SOH can give a good idea of the long term
degradation but could not make it possible to catch local variations due to a specific
use of the battery. Current (I), voltage (V) and temperature (T°) time series reflect the
real use of the battery : T and V curves represent the driver solicitations (acceleration,
speed, breaks...) and T°brings information about the environment in which the battery
is used (cold or warm weather, night or day etc ...). Therefore, we believe that using
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driving data as input to our PHM model is crucial in understanding all possible causes
of deterioration.

3.3 Training dataset

The RUL of a battery decreases at each cycle. Our target is to predict the RUL of a
battery at any given cycle, focusing on only one cycle. That means that in this paper,
a window based approach is used, where the window size is of one cycle. RUL can be
calculated for each cycle following equation 2 :

RUL=Fk —n (2)

where k; is the cycle life of cell number ¢ and n is the observed current cycle of the
cell.

Our approach mixes the use of historical data and temporal series. These two types
of data can’t be used directly together as historical data have one scalar value per cycle
and time series have one vector of varying length per cycle. Therefore, before using time
series in our model, a feature extraction technique is used to condense the information
contained in each vector into one scalar value. For example, several features are computed
from each time series such as the root mean square value, area under the curve or average
value. Computed features from time series can then be exploited as input to any given
model in the same way as historical data. The training dataset as used in our approach
is represented in figure 7.
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Fig. 7. Training dataset composed of historical data and time series features

In order to compare the performances of different combinations of features, two models
were developed : one using only historical data, and another one using a selection of
historical data and time series features.
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4 Proposed architecture

As the dataset is quite recent, only little work has been based on it. In this paper,
the architecture described consists in extracting features from temporal series and use
them along with historical data to predict the RUL of a battery. Our predictive model
is based on a well known machine learning regression tool : Artificial Neural Networks
(ANN). Our goal here is not to investigate new predicting approaches but to prove that
the available data combined with low computational models can lead to very efficient
prediction performances. We only used ANN in this work because they can adapt to a
great variety of data types and size. Moreover, we based our approach on a prediction of
RUL as a scalar value. No sequential prediction of SOH or ageing features is made.

Two different ANN were built according to the number of features they take as input.
The first one takes as input features extracted from time series and SOH, and will be
referred to as TSF ANN (Time Series Features ANN). The second one takes as input
only historical features and will be referred to as HF ANN (Historical Features ANN).

As explained is the previous section, this article also studies the impact of input
features on the prediction performances. In the dataset described in section 3.3, each
cycle is considered as one training sample, and the target is the RUL of the battery. As
each cycle of each cell is considered, the dataset results in more than 99000 samples and a
varying number of features according to the model. As there is a great amount of available
data, the structure of the ANN can extend to several layers, each with a great number
of neurons. Dropout was added after each layer in order to avoid over fitting during
training. In order to find the best combination of hyper parameters (number of layers,
number of units per layers, activation function, dropout rate...), several configurations
where tested following a Bayesian optimisation procedure. In all cases, the output layer
of our model only contains one unit and no activation function as a regression is made
on the RUL, directly in terms of number of cycles.

5 Experiments

The following section describes how each model was tested on the different feature se-
lections and compares the performances of our different models between them and in
comparison with other RUL prediction approaches on the same dataset as us.

5.1 Training process

The first step of the training process is to perform the optimisation of the hyper pa-
rameters as explained earlier. After having completed the setup of hyper-parameters for
different models, optimised models are completely re-trained. The dataset described in
section 3.3 is randomly separated into three distinct ensembles : a training, a validation
and a test set. In order to obtain reliable results, the process is repeated several times.
The error measure is computed as the mean of all obtained measures during successive
training.

5.2 Error metrics

During training, the back propagation process for weight optimisation is carried out with
the Adam optimiser. The loss is calculated with Mean Square Error and performance is
judged with the Mean Absolute Error metrics. We used mini-batch gradient descent in
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order to obtain an efficient and relatively short training time combined with an accurate
convergence towards the minimum loss.

In order to compare the performances of our models between them and with other
approaches in the literature, several scoring measures are used. In a vast majority of
works, the evaluation of models is based on the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE). We also add the Normalised Mean Square Error (NMSE)
in order to compare the performances of our models with future works, and the Standard
Deviation of the MAE (opag) in order to evaluate the reliability of the model. These
quality measures are expressed as follows:

N
1
RMSE= |~ ;(ypred,i —yi)? 3)
1 N
MAE = N Z ‘ypred,i - y’t‘ (4)
1=1
1 N
_ ) L 2
RN ;(az MAE) (5)

N
Zi:l(yp'red,i - yi)2

NMSE =
NV

(6)
In all these formulas, ypreq,; is the RUL predicted by the model, y; is the real RUL
and N is the number of samples on which error is calculated.
In the equation of standard deviation, a is the absolute error of sample 3.

V' is the variance of y. For example, the use of the mean of y as the predicted values
would give an NMSE of 1.

5.3 Prediction performances

In this section the predicting results of our ANNs will be compared between them. Our
two models are built to predict one single value of RUL. A 2D dataset is fed to the
networks and a 1D output is given, which corresponds to the predicted RUL in terms
of cycle. The output can take any possible positive value. Figures 8 and 9 represent the
predicting performances of the different networks. The predicted RUL is plotted as a
function of the real RUL.

Table 1 details the predicting performances of the two developed models. The best
prediction performances are obtained with the TSF ANN, which proves that the infor-
mation contained in time series is highly valuable when designing a PHM strategy for
Li-Ton batteries. Not only is the MAE lower with the TSF ANN (11.44 cycle compared
to 15.08 with the HF ANN), but the predictions are more reliable. Indeed, the standard
deviation of absolute error is lower with the TSF ANN, which means that there are less
aberrant predictions and that more prediction errors are closer to the MAE. Histograms
of the absolute error are represented in figures 10 and 11 show that a greater number of
prediction with the TSF ANN have an error between 0 and the MAE.
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Table 1. Performance of the cycle-window based ANN according to the type of features
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Absolute error

| MAE [onmar [RMSE| NMSE |

Historical features

15.08 | 31.45 | 34.88 [ 8.4%10°

Time series features

11.44 | 26.78 | 29.16 | 5.9%10 "

5.4 Comparison with other approaches

Although many papers in the literature mention their performances in the prediction of
RUL, we can only compare our results with others that were obtained using the same
dataset. For now, very few papers have based their approach on this dataset. The original
paper [1] proposed a feature-based approach using a linear combination of the selected
features. The only other approach we have found using this dataset was proposed by a
research group in an online application designed to predict the RUL and current cycle of
any battery [10]. They have based their approach on a CNN.

Table 2. Comparison of different approaches in the literature

| [ RMSE [ MAE |
Historical Cycle based ANN | 34.88 | 15.08
TSF Cycle based ANN 29.16 | 11.44
LR from [15] 173 | N/A
CNN from [10] N/A 115

Table 2 compares the results obtained by all existing approaches with our best per-
forming model. Although not all the same scoring measures were used in the two com-
parative works, the available scores show that our approach outperforms the prediction
performances of the linear model developed by [1] and CNN developed by [10]. These
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results illustrate the fact that accurate prediction through machine learning needs a great
number of training samples and a good feature extraction strategy. Designing a window
based approach at the scale of one cycle, and extracting features from driving curves is
more efficient than building features from early cycles or from a temporal window over
several consecutive cycles for a use in ANN.

6 Conclusions

This paper is a description of our work on an innovative dataset published by the MIT,
dealing with the ageing of Li-Ion batteries. Building a performing data-driven model re-
lies essentially on the quality of data. With this work, we have proved that the dataset
that had triggered our attention contains highly valuable information, with features rep-
resenting the ageing phenomenon both in the historical domain and time series domain
(driving data). We propose a low computational cost technique with well-known machine
learning models such as artificial neural networks combined with features extraction tech-
niques based on the exploitation of driving curves.

Our results show that a basic approach can outperform more complex models such as
CNN. With our one cycle window based approach, we take advantage of all the infor-
mation contained in the dataset. The prediction of RUL can be made at any cycle when
testing a battery, and can above all be applied to cells whose current cycle is not known.
For future work, we plan to dig further in the same direction. The use of driving data
appears to be crucial, and we believe that employing Recurrent Neural Networks that
are particularly adapted to the study of temporal series and forecasting problems could
improve the performances of our models.
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