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Abstract. Hyperspectral imaging is increasingly used for product monitoring in
industrial processes. Spectral unmixing is an important task in this context. As
in many other areas of signal processing, neural networks also provide promising
results for spectral unmixing. Unfortunately, it is very time-consuming to prepare
labelled training data for the neural networks. To address this problem, this pa-
per presents a method where small training datasets are augmented to improve
spectral unmixing performance. Inspired by Gaussian processes, simple neural net-
works are trained which are capable of generating additional training data. These
are similar to the original training data but cover areas in the continuous label
space that are not covered by the original data.
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1 Introduction

Since they are non-contact and non-destructive, optical measurement methods are often
used for monitoring industrial processes. This also includes checking for the correct prod-
uct composition. For this task hyperspectral images are often used because they have a
finely sampled spectrum in each pixel characterizing the materials involved [1]. In con-
trast, conventional colour images are usually not able to solve this problem sufficiently
because these only contain three colour channels and different spectra can result in the
same colour channel values. Spectral unmixing is needed if more than one material is
contained in a pixel and therefore only a mixed material spectrum is available. The aim
is to get the relative proportions, the abundances, of the pure materials covered by the
pixel [2]. This is often done using mixing models, such as the linear mixing model (LMM),
which has proven to be a good approximation. However, depending on the problem, more
complex mixing models can provide better results but are also more difficult to use [3].
In addition, there is spectral variability, which can be taken into account by the models
using additional parameters.
Instead of a model-based, a data-based approach is also feasible. Artificial neural

networks in particular have achieved great success in recent years. This is also true for
spectral unmixing and comes with additional advantages [4]. One of them is that the non-
negativity and the sum-to-one constraints can be enforced by output layer design. The
other advantage is that spectral variability can be taken into account if it is contained in
the training data [5]. Ideally, the trained neural networks are robust to spectral variability.
To achieve this and a good spectral unmixing performance, lots of significant training
data are needed, which are often not available in this domain.
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Mainly for classification problems, augmentation strategies are widely used to in-
crease the size of training datasets synthetically and improve performance [6, 7]. Data
augmentation can also be used with spectral unmixing, which can be considered as a
regression problem. Here it appears useful to generate spectra based on abundances that
do not occur in the original training dataset. Ideally, spectral variability is also taken
into account by generating many spectra for each abundance set. We have shown in a
previous paper that this improves spectral unmixing performance of convolutional neural
networks (CNNs) [8]. There we used a generative convolutional neural network with addi-
tional random inputs for spectral variability to learn the relationship between abundances
and mixed spectra.
In this paper we model the spectra as Gaussian processes with the wavelength as the

index and the abundances as parameters. Gaussian processes are defined by the mean and
covariance functions. Here we are dealing with functions which depend on the wavelength
and are parametrised by the abundances. To learn these functions, we use simple neural
networks. To generate the additional training data, further abundances are given to the
neural networks. Spectral variability is taken into account by the generation of multiple
spectra.
In a previous paper we have already modelled the spectra as Gaussian random vec-

tors [9]. However, that paper was not about dataset augmentation, but about model-based
data generation taking spectral variability into account. For the model-based approach,
only a set of spectra of each pure material is needed, whereas here we need additional sets
of spectra of material mixtures. The additional information should lead to better spectral
unmixing performance. Another approach exists where spectral unmixing is achieved by
direct application of Gaussian process regression [10], however, not for the augmentation
of training data.
The rest of the paper is organized as follows: Section 2 summarises the necessary

basics regarding spectral unmixing. Afterwards in Section 3 the proposed approach is
described in detail. The evaluation of the approach is given in Section 4. The paper is
summarized and a conclusion is drawn in Section 5.

2 Spectral Unmixing

This paper deals with supervised spectral unmixing, which assumes that the spectra of
the pure substances involved are known [2]. Common spectral unmixing methods are
model-based, with the LMM, representing a good approximation in many cases, being
the most commonly used [2, 11–14]. There also exist non-linear mixing models [3], which
are not considered in this paper. The objective, the estimation of abundances â ∈ RP , is
achieved using the LMM by

â = arg min
a

�y −Ma�22 . (1)

Here y ∈ RΛ is a measured spectrum, i.e. a pixel of a hyperspectral image, sampled at Λ
wavelength channels,M = [m1, ...,mP ] ∈ RΛ×P are the spectra of the up to P involved
pure materials, and a = [a1, ..., aP ]

T ∈ RP are the corresponding abundances. The
optimisation can be done by calculating the pseudo-inverse. However, constraints must
be fulfilled for the abundances in order to remain physically plausible. Those constraints
are the non-negativity constraint (2) and the sum-to-one constraint (3).

ap ≥ 0 ∀p (2)
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P

p=1

ap = 1 (3)

The consideration of these constraints counteracts model errors caused by the assump-
tion of a linear mixing behaviour. A well established approach that optimises the LMM
considering (2) and (3) is the Fully Constrained Least Squares (FCLS) algorithm [15].
Instead of (1), the Lagrangian L : RP+1 → R with the Lagrange multiplier l ∈ R is
optimized:

L(a, l) = �y −Ma�22 − l
P

p=1

ap − 1 . (4)

The second part of (4) forces constraint (3). Additionally, negative âp and the corre-
sponding spectra in M are removed in an iterative procedure to ensure (2) as well.
Until now, the assumption has been made that the pure substances involved can be

represented by a single spectrum. However, there is so-called spectral variability. It is
caused, among other things, by changing surface conditions and the resulting variation
in the angle of illumination [5]. Extended mixing models are available that take spectral
variability into account by using additional parameters, such as the extended linear mix-
ing model (ELMM) [16] or the generalized linear mixing model [17]. The ELMM uses
the diagonal matrix B ∈ RP×P to extend the LMM optimization problem to

â = arg min
a,B

�y −MBa�22 . (5)

After presenting the basics, the next section describes the approach used to augment
training datasets. The aim is to improve the performance of spectral unmixing for data-
based methods.

3 Proposed Approach

The prerequisites for this approach are a set of available spectra for different abundance
vectors a. This is quite reasonable in an industrial environment, e.g. in a calibration
dataset. The measured spectra are available as vectors ya ∈ RΛ in which each entry
corresponds to the reflectance of light for a specific wavelength. For each abundance
vector a there are different measured spectra, which differ due to spectral variability.
These are now to be modelled as one Gaussian process Y (λ|a) with the wavelength index
λ ∈ N as the index and parametrised with the abundance vector a.
Gaussian processes are completely defined by a mean function and an (auto-)covariance

function [18, p. 13]. In this case, the mean value function is

mY (λ|a) (6)

and the covariance function with the second wavelength index λ∗ ∈ N

kY (λ, λ
∗|a) . (7)

3.1 Data Preparation

In order to be able to represent this model with neural networks, the data are prepared.
First, for all abundance vectors a, the mean vector (8) and auto-covariance matrix (9)
are calculated.

ma =
1

Na

Na

n=1

yan (8)
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Ka =
1

Na − 1

Na

n=1

(yan −ma) (yan −ma)T (9)

Here Na ∈ N denotes the number of measured spectra for a given abundance vector a.
The elements of ma and Ka for all available a can now be used as training data for the
neural networks Nm and Nk that are supposed to learn (6) and (7).
The neural network Nm has the abundance vector a and the wavelength index λ as

input variables and as the output variable the corresponding value of ma. The neural
network Nk has the abundance vector a and the transformed indices λ

�
1 = λ + λ

∗ and
λ�2 = max(λ)− |λ− λ∗| as input variables and as the output variable the corresponding
value ofKa. The indices λ

�
1 and λ

�
2 are used because of two properties that the covariance

matrices have. Firstly, there are higher values on the main diagonal, and secondly, they
are symmetrical. This results in the neural network being kept quite simple later on, as
it has to learn fewer changes in monotonicity (see Fig. 1).

Fig. 1. Illustration of the values of the indices in the auto-covariance matrix (from left to right):
λ, λ∗, λ�1 and λ

�
2. Dark blue denotes a low value, yellow a high value

3.2 Neural Networks for Data Augmentation

The neural networks can now be trained with the prepared training data as described
above. The neural networks each have P+1 (a and λ) or P+2 (a, λ�1, and λ

�
2) inputs and

only one output. To learn the desired relation a quite simple neural network is sufficient.
The networks consist of fully connected layers, i.e. layers in which all neurons of

one layer are connected to all neurons of the neighbouring layers. The rectified linear
unit (ReLU) frelu(z) = max(0, z) is used as the activation function in all layers, with the
exception of the last layer, where the logistic function

flog(z) =
1

1 + e−z
(10)

is used. Batch normalisation is carried out prior to the rectified linear units [19]. The
networks Nm and Nk have the same structure, which is shown in Fig. 2. The logistic loss
function is used as objective function:

− 1
B

B

b=1

ob · log(ôb) + (1 − ob) · log(1− ôb) . (11)

It is evaluated for each output value ôb ∈ (0, 1) and corresponding label ob ∈ (0, 1) of
a training batch of size B ∈ N. The logistic loss function is often used for a two-class
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Fig. 2. Schematic representation of the neural network: There are four blocks consisting of a
fully connected layer, batch normalisation and a ReLU activation function. This is followed by
a fully connected layer with the logistic activation function

classification problem (cross-entropy loss). However, it also works with continuous labels
and is suitable here because the values of the spectra range between 0 and 1.
Using the trained neural networks Nm and Nk, an augmentation of the original train-

ing dataset can now be performed.

3.3 Augmentation Strategy

For the augmentation, additional mean value vectors and covariance matrices can now
be generated by specifying abundance vectors for Nm and Nk that do not occur in the
original training dataset. This allows pseudo-random generators to be used to produce
spectra that complement the original training dataset. The spectra generated in this way
also show spectral variability.
In order to augment the datasets at a lower effort a second strategy is used, where

the original training datasets are only augmented by the mean value spectra. The neural
network, which is later used for spectral unmixing (see Section 4), then has to learn the
spectral variability on basis of the already existing training data.
The spectral unmixing performance of the augmented datasets is compared with that

of the non-augmented datasets.

4 Experimental Results

Preceding the evaluation, the parameters used for Nm and Nk and the evaluation datasets
are presented. The number of neurons was determined to be 32 for all layers and in both
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cases (Nm and Nk). The neural networks were trained with the Adam optimizer [20]. The
parameters from [20] were used, except for the learning rate, which was set to 0.01. The
number of epochs was set to 2000 (both networks) for the datasets containing mixtures of
quartz sand (see below) and to 3000 (Nm) and 4000 (Nk) for the colour powder dataset.

4.1 Datasets

Three datasets are used, which were recorded in our image processing laboratory. This
ensures that we know the abundances as accurately as possible. All datasets consist of
fine powders. These were mixed according to the specified abundances until the mixtures
were homogeneous. A white balance with a reflectance standard was carried out after
the recordings of the hyperspectral images, which compensates both spatial and spectral
inhomogeneities of illumination and measurement setup. All datasets were acquired in
91 wavelength channels, ranging from 450nm to 810 nm. For each mixture, 400 samples
were acquired.
Two of the datasets contain mixtures of coloured quartz sand. The first of them

(quartz-3) contains 45 mixtures of at maximum 3 components varying in abundance steps
of 0.125 . The other one (quartz-4) includes 56 mixtures of at most 4 components, varying
in abundance steps of 0.2 . The quartz sand datasets have a lower spectral variability and
the non-linearity in the mixing behaviour is less significant compared to the following
dataset. The third dataset consists of 56 mixtures of colour powders (colour-4), which
also have up to 4 components. Again, the components are varied in abundance steps
of 0.2 . The colour-4 dataset shows a high non-linearity between mixed spectra and the
spectra of the pure substances and a high spectral variability. Hence, its spectra are more
difficult to unmix.
All three datasets are divided into a test and a training dataset according to the

abundances. For the datasets with four components, the samples with no abundance of
value 0.2 or 0.8 are included in the training dataset. All other samples are included in
the test dataset. This yields 16 abundance vectors in the training and 40 in the test
dataset. The quartz-3 test dataset includes those where at least one abundance has the
value 0.125, 0.375, 0.625 or 0.875. In consequence, there are 30 abundance vectors in the
test dataset and 15 in the training dataset.

4.2 Evaluation of Generated Data

Using the neural networks from Section 3, new data are generated. The abundance vec-
tors used as inputs are exactly the same as those in the test dataset. For each given
abundance vector 400 spectra are generated, which correspond to the number of spectra
per abundance vector in the test dataset.
As a measure of performance, the average minimum norm ∆AMN is used between I

measured spectra yi and H generated spectra ŷh corresponding to an abundance vector:

∆AMN =
1

I

I

i=1

min
h
�yi, ŷh�2 . (12)

This performance measure was chosen because it tests whether a spectrum was generated
as similar as possible to each spectrum in the test dataset. The calculation is done
separately for each abundance vector and the corresponding spectra. The mean value of
all ∆AMN over all abundance vectors in the test dataset is called global average minimum
norm ∆GAMN (see Table 1). The results of both proposed augmentation strategies are
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compared with the performance of the generative convolutional neural network (Gen.
CNN) with and without covariance matrix regularisation (-CovR) we presented in [8].

Table 1. Comparison of ∆GAMN for all test datasets. In the first two columns the results from
[8] are listed for comparison. The third column presents the values for the proposed method and
the last column uses only the generated mean vectors m̂a as generated spectra

∆GAMN Gen. CNN [8] Gen. CNN-CovR [8] Proposed (normal) Proposed (mean only)

quartz-3 0.1219 0.0812 0.0993 0.1371

quartz-4 0.1113 0.0787 0.0903 0.1298

colour-4 0.1242 0.0967 0.1016 0.1470

Table 1 shows that the inclusion of the covariance matrices results in lower ∆GAMN
values for all datasets compared to only using the mean vectors. This is because spectral
variability is taken into account. The results of the proposed method are better than
those of the unmodified generative CNN. However, the best results were achieved with
the generative CNN with covariance matrix regularisation. It is also noticeable that
within a method, the order of the datasets regarding ∆GAMN always remains the same,
which is due to the difficulty of the datasets.
In the next subsection, it will be investigated whether these results are consistent

with those of spectral unmixing using augmented training datasets.

4.3 Spectral Unmixing Performance

For evaluation of the spectral unmixing performance, we use the same CNN as in [8],
of which we have already presented the three-dimensional version in [4]. The CNN is
trained with the original training dataset as well as with different augmented training
datasets. The performance with respect to the test dataset is compared below. The CNN
for spectral unmixing consists of three convolutional layers with a convolutional kernel
length of 3. Then two fully connected layers follow. The numbers of feature maps from the
input layer to the output layer are 1, 16, 32, 64, 64 and 1. We use the root-mean-square
error over all N samples of a test dataset

∆RMSE =
1

N

N

n=1

1

P

P

p=1

(âpn − apn)2 (13)

as a performance measure. For the methods that are not based on neural networks (see
Section 2), the results are shown in Table 2 for the sake of clarity. For the remaining
methods ∆RMSE is displayed in Figure 3.
To obtain the results below, the network was trained with different numbers of epochs

depending on the dataset and method. The quartz-3 dataset was trained for 251, the
quartz-4 dataset for 41 and the colour-4 dataset for 31 epochs for the proposed method.
When only mean vectors are used for augmentation, the number of epochs reduces to
31 (quartz-4) and 21 (colour-4). As a reference, we use the non-augmented training
dataset, that was trained for 81 (quartz-3), 21 (quartz-4) and 21 (colour-4) epochs. The
different numbers of epochs are chosen to avoid overfitting.
The original training datasets were augmented with a different number of spectra.

Figure 3 shows the step size s ∈ [0, 1] in which the additional abundance vectors were
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Table 2. Comparison of ∆RMSE for all test datasets for FCLS and ELMM based spectral
unmixing

∆RMSE quartz-3 quartz-4 colour-4

FCLS 0.1608 0.1115 0.2987

ELMM 0.1555 0.1056 0.2990

varied to generate the new data. All possible abundance vectors corresponding to the step
size s are used in spectra generation, except for those already contained in the original
training dataset.
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Fig. 3. Comparison of ∆RMSE for the test datasets of the quartz-3, quartz-4, and colour-4
datasets (top to bottom) for CNN-based spectral unmixing using different augmentation strate-
gies. The dashed lines are used for a better visual comparability with the non-augmented case

It is shown that the data-based spectral unmixing methods (Figure 3) perform better
than the model-based methods (Table 2). Gaussian process based augmentation leads to
an improvement compared to the non-augmented training dataset for all datasets and
all step sizes s. The size of s does not have a major influence, unless it is chosen too
large, in which case the performance deteriorates. If only the mean spectra are used
for augmentation, the results are comparable. This is probably due to the fact that the
spectral variability does not depend too much on the abundances and is already well
represented by the spectra available in the original training dataset. For the colour-4
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dataset, the result is worsened by adding the information from the covariance matrices.
In this case, the assumption of a Gaussian process is likely to be an oversimplification.
The results from [8] cannot be reached with this approach. However, the training

time of the neural networks for augmentation is approximately 9 times1 shorter. On the
one hand, this is due to the lower dimensional data points and therefore simpler neural
networks. On the other hand, the size of the training dataset for augmentation is reduced
if only the described moments are used as training data. The latter is especially true if
only the mean spectra are used. In this case it is only one spectrum per abundance vector
instead of Na. This leads to an approximately 120 times

1 shorter training time compared
to [8].

5 Conclusion

In this work, an approach to augment training datasets for spectral unmixing was pre-
sented. For this purpose, inspired by Gaussian processes, a mean and a covariance func-
tion are learned by two neural networks. These networks are then used to generate
additional training data.
It was shown that the performance of spectral unmixing with a CNN can be improved

by the additional training data generated by these neural networks. It depends on the
dataset how significant the improvement is. The improvement is slightly lower as with
an existing method that uses a generative CNN for augmentation. However, the training
time is an order of magnitude shorter. If only the neural network for the mean value
function is used, where a similar increase in performance was observed depending on the
dataset, the training time decreases by another order of magnitude.
In the future, something in between the two approaches presented would also be

feasible. There, only the more relevant parts of the covariance functions would be used.
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