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Abstract. A common mantra for automated decision systems is that a system
should know when it doesn’t know. Bayesian neural networks are designed to
capture uncertainties over the network weights and in theory, they perform better
predictions and output uncertainties. To this end, we compare in this paper a
deterministic neural network and a Bayesian neural network for the classification
of chest diseases in radiological images. We use the ChestX-rayl4 data set [1]
involving 14 respiratory diseases like pneumonia and atelectasis. We found that the
deterministic network similar to CheXNet [2] outperformed the Bayesian version
in this task, whereas, employed on the more simplistic MNIST dataset it did not.
Our experiments suggest that there is a gap between theory and practical use of
BNNs for very deep networks and real clinical data.
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1 Introduction

In 2016 almost 2.38 million people died from lower respiratory infections worldwide.
This was the sixth leading cause of mortality for all ages that year [3]. For the last three
decades, pneumonia was the most common cause of death for children under 5 years
[4]. While the treatment of a diagnosed pneumonia patient can be done efficiently with
low-cost, low-tech medication and care [5], the detection of lower respiratory infections
leaves room for improvement. The diagnosis of such diseases with the help of chest X-rays
is very effective and currently the best available method [6]. Unfortunately, this task is
challenging and requires expert radiologists which are rare in impoverished regions.

Past work about the detection and classification of lung diseases on chest X-rays with
convolutional neural networks (CNNs) could achieve promising results that match or
exceed the performance of radiologists [2]. These deterministic neural networks, albeit
being right most of the time, won’t tell you how certain they are about their decisions.
In critical applications, where the cost of error is high, an indication of confidence can
be extremely valuable, especially in uncertain edge cases.

While deterministic neural networks contain a specific set of weights, Bayesian neural
networks (BNNs) assign probabilities to all possible sets of weights, allowing for un-
certainty quantification. In this work, we will assess the applicability of Bayesian deep
learning in the field of medical diagnosis. We, therefore, implement a version of the de-
terministic neural network CheXNet [2] and a Bayesian version of CheXNet using recent
advances in Bayesian deep learning. We then evaluate and compare their performance
on the ChestX-ray1j data set [1]. Furthermore, we efficiently measure aleatoric and epis-
temic uncertainties in the Bayesian model’s predictions.
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2 Related Work

2.1 Bayes’ Theorem

Bayesian deep learning utilizes Bayes’ Theorem to calculate conditional probabilities. In
the context of deep learning, Bayes’ Theorem can be rewritten as

, _ p(Dlw) p(w)
p(uip) = BEEE, (1
with a neural network’s parameters w (the hypothesis) and data D (the evidence).
Bayesian deep learning aims to calculate the posterior distribution p(w|D), which ”cap-
tures the set of plausible model parameters, given the data” [7]. This is done by mul-
tiplying the likelihood p(D|w) of data D occurring given parameters w with the prior
distribution p(w) and normalizing it by the data distribution p(D).

We can implement a Bayesian neural network by replacing a ” deterministic network’s
weight parameters with distributions over these parameters, and instead of optimising
the network weights directly we average over all possible weights (referred to as marginal-
isation)” [7). With Bayesian inference we can calculate the posterior distribution p(w|D)
and predict probabilities y* given new data z*:

p(y*a*, D) = / p(y*|z* ) p(w|D) duw . )

2.2 Variational Inference

Hinton and Van Camp initially proposed wvariational inference for neural networks in
1993 [8] as an alternative to methods involving expensive Monte Carlo sampling. In
2011, Graves [9] published an improved approach, suitable for more complex neural net-
works. Variational inference solves the intractability of the integral over the true posterior
distribution p in eq. 2 by integrating over a simplified posterior distribution ¢ with varia-
tional parameters @ instead. This variational posterior gy is an approximation of the true
posterior p but is easier to sample from. In most cases, a Gaussian distribution N (x, o?)
with parameters 6 = (p1, 0%) for the mean and the variance respectively is used. Graves’
approach optimizes the posterior approximation gg(w|D) =~ p(w|D) by minimizing the
variational free energy F, also referred to as the negative variational lower bound or
negative evidence lower bound (ELBO). For deep learning, F can be reinterpreted as
minimum description length cost function [9]:

F(D,0) = KL[gs(w)|[p(w)] = Egy(w)[log p(D]w)], 3)

where K L[gg(w)||p(w)] is the Kullback-Leibler (KL) divergence between both distri-
butions. It consists of a data-dependent part (the likelihood cost or error loss) and a
prior-dependent part (the complexity loss). The function embodies a trade-off between
satisfying the complexity of the data D and the simplicity of the prior p(w) [10].

Graves’ approach for a tractable approximation of the Bayesian neural network’s pos-
terior distribution was the cornerstone for more efficient and stable estimation methods
like Stochastic Gradient Variational Bayes (SGVB) [11], the local reparameterization
trick [12] and the flipout estimator [13].
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2.3 Uncertainty Estimation in Bayesian Deep Learning

Kendall and Gal [7] describe the two types of uncertainty in the context of Bayesian deep
learning as follows:

Epistemic uncertainty is often referred to as model uncertainty, as it ”captures our
ignorance about which model generated our collected data” [7].

Aleatoric uncertainty, on the other hand, ” captures noise inherent in the observations”
[7] and thus is often referred to as data uncertainty. This type of uncertainty can further
be categorized into homoscedastic uncertainty and heteroscedastic uncertainty. While
homoscedastic uncertainty stays constant for different inputs, heteroscedastic uncertainty
varies from input to input, with some potentially having more noisy outputs than others.
They note that "heteroscedastic uncertainty is especially important for computer vision
applications” [7].

The paper concludes, that measuring both types of uncertainty is crucial for the safety
and reliability of models. Aleatoric uncertainty is important for ”large data situations,
where epistemic uncertainty is explained away” and "real-time applications, because
we can form aleatoric models without expensive Monte Carlo samples” [7]. Epistemic
uncertainty is important for ”safety-critical applications, because epistemic uncertainty
is required to understand examples which are different from training data” and ”small
datasets where the training data is sparse” [7].

Kendall and Gal [7] proposed a method to estimate both the aleatoric and the epis-
temic uncertainty, which was later refined for classification by Kwon et al. [14]:
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7 > diag(p) = pepi + 7Y (b~ P (B 1) (4)
t=1

t=1

aleatoric epistemic

with the predicted probability vector p; = p(i;) = Softmax{ f?t(z*)}, that is sampled
T times, the diagonal matrix diag(p;) with elements of vector p;, and the mean predicted
probability p = Zthl p¢/T. We later use the formula of 4 in our experiment to measure
our model’s uncertainties.

3 Methods

3.1 First Tests with TensorFlow Probability and MNIST

To gain our first practical experience in implementing a Bayesian convolutional neural
network for disease classification on X-rays with TensorFlow 2.0 and its probabilistic
programming library TensorFlow Probability, we first looked at a simpler image clas-
sification task. We implemented the small LeNet-5 network [15]. It consists of only 7
layers (3 convolutional layers, 2 subsampling layers, 2 fully connected layers) making it
a relatively simple and small network in today’s time. The original LeNet-5 architecture
is a deterministic neural network and does not use probabilistic methods. To make it
Bayesian we replaced the deterministic convolutional and fully connected layers from
TensorFlow with the probabilistic layers from TensorFlow Probability. The model’s task
is to classify the images of the MNIST data set [15] and tell which digit is depicted.
The data set contains 28x28 pixel small, grayscale images of a handwritten digit (0-9),
normalized in size and centered in the image and is split into 60,000 training samples and
10,000 test samples. We trained the model in mini-batches with 128 normalized images
each, where the Adam optimizer [16] minimizes the categorical cross-entropy loss.
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Results and Conclusion After training for 75 epochs, the Bayesian model achieved a
validation accuracy of 0.984, which was good enough for us to stop the training. We then
performed Monte Carlo sampling by asking the trained model to predict the labels of the
same unseen images 50 times. The resulting outputs were different at each prediction as
figure 1(b) shows. For comparison, we trained a non-Bayesian, deterministic version of
the network. 10 epochs of training already yielded a training accuracy of 0.997. Figure
1(a) shows the resulting test prediction plots. Note that a deterministic model always
outputs the same values for the same input, requiring only one prediction per sample
at inference. To show how the models perform on unusual data, we tested with ”fake”
MNIST images from the notMNIST database, which contains images that look similar
to those in the MNIST database but show letters instead of numbers. The resulting
prediction plots can be seen in the last samples of figure 1.
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Fig. 1: Predictions of the deterministic and the Bayesian model on the MNIST data set.

Concluding, the first thing to note is that training the Bayesian neural network takes
considerably longer than training the deterministic one. Figure 1 shows that both models
correctly classified the first sample. However, the Bayesian model predicted wrong classes
several times during the Monte Carlo inference on the second sample. Looking at the input
image, we can argue that the ”5” looks like a ”6” or an ”8” to some degree. Thus, having
the Bayesian model predict those digits a few times is a justifiable and possibly desirable
sign of uncertainty. The third sample depicts the letter ”F” in a circle and is also inverted.
Hence, the sample neither belongs to a class that can be predicted by the model nor did
the model see comparable images during training. While the deterministic model was sure
it saw the digit 72" (figure 1(a)), the Bayesian model was highly uncertain in its decision
(figure 1(b)). The plot shows that during Monte Carlo sampling the model predicted
different classes every time, causing the average prediction to have a low, almost similar
probability for every class. This can be interpreted as an indication of high uncertainty
and the model saying "I don’t know”. In critical applications like medical diagnosis, this
behavior is highly desirable.
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3.2 CheXNet and Bayesian CheXNet

The main goal of this work is to show the advantages of Bayesian deep learning over
traditional, deterministic deep learning for medical image classification. We compare
performances of the deterministic CheXNet [2] and our Bayesian neural network with a
similar architecture.

CheXNet achieves state-of-the-art results on all 14 diseases of the publicly available
ChestX-rayl4 data set [1]. The data consists of 112,120 single grayscale image files and
CSV files with metadata like the images’ disease labels and bounding boxes indicating the
location of the disease. We pre-processed the images by down-scaling them to 224x224
pixels and normalizing the 8-bit pixel values (0 - 255) to float values between —1 and 1.
Finally, we split the data into train, validation, and test set containing 98,656 (93.5%),
6,336 (6%), and 432 (0.5%) data points respectively.
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Fig. 2: DenseNet121 architecture with Dense Blocks D and Transition Blocks T;
Source: [17]

To replicate CheXNets model architecture, we used a copy of the DenseNet121 model
(depicted in figure 2) coming with TensorFlow’s Keras API. We changed the input shape
of the model to match the monochromatic 224x224 image matrices. Furthermore, we
changed the output layer to return 14 values and used the sigmoid non-linearity activation
function instead of softmaz, as we want the model to predict independent continuous
values to indicate each disease. For our Bayesian version of CheXNet, we replace the
deterministic convolutional and fully connected layers with probabilistic layers from the
TensorFlow Probability library.

Training Results We trained both models with mini-batches by minimizing the binary
cross-entropy loss with the Adam optimizer. After 70 epochs, the deterministic model
achieved a training AUC of 0.9006 and a validation AUC of 0.8582. We outperform the
original CheXNet with an average per-class AUC score of 0.8414 by a small margin. Our
Bayesian model failed to achieve good performance just by introducing the probabilistic
layers. We stopped the training after 17 epochs as the validation loss started to increase
while the AUC decreased to 0.5 which is the random baseline.

3.3 Model Improvement Approaches

As our first results show, we couldn’t achieve good model performance in this task simply
by using Bayesian layers. Although we could get additional benefit from implementing
uncertainty measures, a bad performing model isn’t practically useful in any real-world
application, let alone in disease detection. In the following, we will discuss and test several
approaches we took to increase the model’s performance.
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Choosing Hyperparameters In our first approach, we searched for better hyper-
parameters by training the neural network with different handpicked sets of learning
rates, mini-batch sizes, and optimization algorithms. The model that performed best was
trained with the Adagrad optimizer, a learning rate of 0.1, and a mini-batch size of 64.
An automated search for parameters with Hyperopt [18] led to similar results.

Dealing with Imbalanced Data As our data set is extremely imbalanced (with signifi-
cantly more negatives than positives), we introduce a weighted loss function that penalizes
misclassified positive samples more. This way we can nudge the model towards looking
at positive training samples more carefully. This approach, which was also proposed in
the CheXNet paper, significantly improved our model’s learning and performance on the
Fl-score and the AUC value.

Initialization with Pre-trained Weights The deterministic CheXNet is initialized
with weight parameters pre-trained on the ImageNet data set. In an attempt to make use
of parameter transfer learning in our Bayesian model, we initialize the model’s priors with
normal distributions with variance 1, mean-shifted towards the single-point parameter
values from the pre-trained weights. After training for a while, we concluded that the
initialization with weights pre-trained on ImageNet, neither improved model performance
nor sped up the training.

4 Results and Conclusion

HTest set“ AUC Fl-score F2—score[Epistemic Aleatoric“

Deterministic

Full |(0.8339 0.1444 0.1019 - -
1 0.7552 0.2858  0.2000 - -
0.6940 0.2858 0.2000 - -
0.9502 0.0000 0.0000 - -
0.8523 0.3333 0.2778 - -
0.9091 0.4000 0.2941 - -
0.7614 0.0000 0.0000 - -

Bayesian
Full |[0.6579 0.1298 0.2551 - -
1 0.5378 0.1176 0.1923 | 0.0111  0.2098
0.4544 0.1176 0.1923 | 0.0143  0.2088
0.4851 0.0571 0.1135 | 0.0033  0.2149
0.6098 0.0851 0.1695 | 0.0076  0.2129
0.5739 0.0976 0.1888 | 0.0109  0.2080
0.6686 0.1499 0.2884 | 0.0037  0.2166

[=2] RS SN RGN )

| U | W

Table 1: Test results of the deterministic and the Bayesian model on each test set.

We assessed the deterministic and the Bayesian models’ performance on the test set
and additional samples with Gaussian noise. Our deterministic model achieved an AUC
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of 0.8339, similar to the 0.8414 stated in the original CheXNet paper. This verifies that
our implementation of the model and the rest of our deep learning pipeline work as
expected. The Bayesian model achieved a lower AUC of 0.6579, as well as lower F1-,
and F2-scores. We measured mean epistemic uncertainties ("model uncertainty” [7]) of
0,0085 and mean aleatoric uncertainties (”data uncertainty” [7]) of 0,2118.
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Fig. 3: The models’ predictions for a test sample.
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Fig.4: The models’ CAMs for class 3 of a test sample and the actual location of the
disease.

Figure 3 shows an example of the models’ predicted probabilities for a test sample
with true labels 2 and 3. The deterministic model predicted classes 2 and 3 with the
threshold of 0.5, while the Bayesian model’s averaged predictions of the 50 predictions
sampled show all classes to be true. The generated class activation maps (CAMs) of
figure 4 show that both models didn’t look at the right location for their prediction of
class 3.

We interpret the much higher aleatoric uncertainty as a result of the nature of ra-
diological images, which can also contain pacemakers and/or other patient-specific aids
and the low resolution of the images that were fed into the network. The epistemic
uncertainty suggests that the prior for the model should be adjusted. The sampled pos-
terior probabilities range between 0.6 and 0.8 for each class on most of the test samples,
which could imply that the model’s weight distributions were initialized with a too high
variance that couldn’t be reduced during training. So far, state-of-the-art results with
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Bayesian neural networks were achieved on simplistic and carefully curated data sets like
MNIST and CIFAR-10 moderate deep networks [19]. Our experiments with radiological
images and very deep networks didn’t achieve state-of-the-art results. This suggests that
the complexity of the data, the model size, and/or the initialized variance are the most
important factors that can be further analyzed.
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