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Abstract. Recent years have witnessed the rapid progress of deep neural net-
works. However, in supervised learning, the success of the models hinges on a
large amount of training data. Therefore, data augmentation techniques were de-
veloped to increase the effective size of the training data. Using such techniques is
especially important for domains where the amount of available data is limited. In
digital pathology, data augmentation is therefore often applied to improve the per-
formance of classifications. This work systematically investigates single data aug-
mentation techniques on different datasets using multiple network architectures.
Furthermore, it proposes guidelines on using data augmentation when training
deep neural networks on histopathological data.
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1 Introduction

The prediction quality of supervised learning models relies on the available data’s quan-
tity, quality, and heterogeneity. In training a deep neural network, these factors are
essential to create a robust and generalizing model. Different transformation techniques
can be utilized on the available data to synthesize new samples if a dataset lacks some
of these aspects. Such techniques are summarized under the term data augmentation.

Nowadays, there are a variety of different augmentation methods to synthesize new
data. These range from classic image manipulation approaches to more contemporary
methods like training with adversarial examples [1] or generating entirely new datasets
using generative adversarial networks [2]. Several studies investigated the effect of such
data transformations on traditional machine learning datasets and proved their benefit [3,
4]. We applied and reviewed some of these transformations to the domain of histopatho-
logical datasets.

In recent years, the medical field of pathology has been subject to digital change.
Part of this change is to aid the traditional diagnostics, i.e., inspecting extracted tissue
sections under a light microscope with computer algorithms [5, 6]. A promising option is
to let machine learning or deep learning support pathologists’ diagnostic work. Therefore,
numerous research studies attempt to answer specific pathological questions using neural
networks. Since these questions are usually image classification problems, the approaches
use the supervised learning regime, utilizing convolutional neural networks (CNN) [7-9].

Although there are examples of publicly available digitized tissue samples [10], there
is a lack of well-curated datasets useful for the supervised learning approach. In addition,
highlighting the need for data augmentation methods in this domain, most public datasets
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are relatively small. Collecting suitable images for a given medical problem is challenging
due to the non-uniformity of manifestations and the need to consider patient rights.
Labeling these images requires the highly specialized expertise of a pathologist, adding
to an already busy workload.

In this work, we build a pipeline to systematically investigate basic data augmen-
tation techniques on different classification datasets and network architectures. For this
purpose, we selected two public histopathological datasets for different medical prob-
lems: classification of mitosis candidates and tissue type classification. We trained three
contemporary CNN architectures for all of these data sets, examining different types of
augmentation methods. This paper describes the experimental setup to measure the in-
fluence of a single data augmentation technique on the model’s performance. In addition,
it proposes guidelines for using data transformations in the supervised learning setting
regarding different types of histopathological data. Finally, it discusses under which cir-
cumstances data augmentation has a reliable benefit for a model’s training process.

2 Related Work

Due to its regularization effect, data augmentation is a popular method used in deep
learning pipelines to reduce overfitting and increase the robustness of a model, especially
concerning an image classification problem. In fact, the method is so established that
several tools exist to make standard techniques more accessible [11-13] or even automate
the augmentation process [14, 15].

Several studies examined the actual influence of different data augmentation tech-
niques and showed its beneficial effects in the context of natural images [3, 16]. A widely
used taxonomy to divide the common techniques into categories is basic image manipula-
tions, e.g., geometric transformations, cropping, occlusion, noise injection, filtering, color
transformations, and deep learning approaches, e.g., adversarial training, style transfer,
synthetic image generation via generative adversarial networks [3, 17].

Unlike in the natural image domain, where datasets can provide millions of images, far
fewer qualitatively annotated samples are available in the field of histopathology. Hence,
data augmentation has established itself as an integral part of the training pipelines in
this area as well. Interestingly, it is almost exclusively the use of newer augmentation
techniques from the deep learning approaches that have been broadly reviewed thus far.
Generative adversarial networks (GANs) were investigated to solve the stain normal-
ization problem using style transfer methods. Color differences and disturbances are a
considerable challenge through various tissue staining protocols and the varying digi-
tization processes. Style transfer can homogenize the color distribution in a data set
and thus the distributional shift in a dataset [18-20]. Some studies even explored the
transfer of staining protocols utilizing GANs; e.g., Mercan et al. trained a model that
converts images obtained from H&E stained tissue into virtual PHH3 staining [21]. In
addition, GANs are used to synthesize completely artificial samples to enrich small data
sets [22-24].

Concerning basic image manipulation, many approaches use several techniques to aug-
ment their datasets but do not evaluate the influence of augmentations; see, e.g. [25, 26].
Primarily, basic manipulation techniques are used intensively in conjunction with semi-
supervised learning methods, which are becoming increasingly popular in this domain
[27-29]. Color transformations, in particular, are one of the most widely used techniques
due to the nature of histopathological images [26]. Tellez et al.[30] and Karimi et al.[31]
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examined the stain normalization problem more closely and developed custom augmen-
tation techniques for it.

However, in-depth studies which comprehensively evaluate the effect of basic image
manipulation techniques can only be found for radiology images in the medical domain
[17,32-34].

3 Method

We have developed a pipeline to measure the effect of data augmentation techniques
in supervised learning on histopathology datasets.! We can configure experiments as a
triple (d,m,t) € D x M x T where D is the set of possible datasets, M denotes the set of
considered deep neural network architectures, and T corresponds to the set of different
data augmentations. A specific transformation ¢ manipulates online the batches drawn
from the dataset d to create transformed batches, that are used to train a deep neural
network m. Keeping the pair (d, m) constant, the influence of ¢ on the trained model can
be measured by comparing its parameters and performance. This section describes the
sets D, M, T in more detail and contains information about the training and evaluation
protocol used.

3.1 Datasets D

Set D consists of the publicly available datasets MIDOG? and BACH?. Both sets were
pre-processed to fit a classification problem.

The task of the BACH dataset is to distinguish between four different tissue types.
It is a tiny dataset with images of 2048x1536 pixels and 100 samples per class, i.e., 400
samples overall. Therefore, we cropped patches from the original images using a 512x512
window with a 256-pixel step to increase the dataset size. In addition, we discarded
patches not containing any H&E-stained tissue during the process by removing tiles with
less than 3% tissue. Finally, we split the dataset into three subsets using random sampling
for training (4801 samples), validation (1655 samples), and test (1647 samples). Patches
with overlapping pixels in the subsets were removed. The classes of the dataset are nearly
balanced.

The MItosis DOmain Generalization Challenge [35] published a dataset of human
breast cancer tissue samples. However, we note that up to this point, only the training
set is publicly available, consisting of 1721 mitotic figures and 2714 non-mitotic examples.
The samples were acquired using three different whole slide image scanners and annotated
by trained pathologists with a multi-expert blind annotation pipeline. We pre-processed
the dataset by cropping a 250x250 patch around each annotation center. We sampled
three distinct subsets keeping the class balance: training (2219), validation (1071), and
test (1145).

3.2 Models M

The model set M consists of the networks VGG[36], Inception[37] and Densenet[38]. These
networks form a cross-section over the development of CNN architecture and, therefore,

! The source code is available via Github: https://github.com/CBMI-HTW /Data-
Augmentation-Histology

2 https://imi.thi.de/midog/the-dataset/

3 https://iciar2018-challenge.grand-challenge.org/Dataset/
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have distinct structural elements. We intend to investigate whether these structures react
differently to data augmentation. We use a pre-trained PyTorch model with reinitialized
classification head, i.e. vggl1_bn, inception_v3 and densenet121, as baseline for each net-
work type. These models require as input square images of a model-dependent size n,,,
i.e. the input images have shape n,, X 1.

3.3 Transformations T

The transformations in 7" fall in the categories: color-based, geometric-based, filter-based
transformations, and erasing. All transformations are realized by using the implementa-
tion of the torchvision library.

In our setup, transformations are applied with a certain probability p, with p = 1 if not
stated differently. For most of these transformations ¢ an additional parameter s controls
the strength of the transformation on the input z, i.e. the output of the transformation is
ts(z). For each corresponding transformation, s is sampled from a certain interval, where
the size of this interval is a hyperparameter in our setting.

The hyperparameters of the geometric-based transformations are determined by n,,
and the maximal distortion without getting blacked borders. For all other transformations
we perform a hyperparameter optimization on the BACH dataset and VGG model to
identify the best parameter ranges. We trained for each configuration of parameters a
minimum of 7 models and choose the setting with the highest mean validation accuracy as
the best performing one. These models were only used to determine the hyperparamters
and not for the final test results.

Color-Based Transformation As color-based transformations we use the standard
transformation for brightness, contrast, gamma value, hue angle and saturation. The
strength s is sampled randomly from the interval [sg — sy, so + s1] where, the center s
is defined by ts, = identity. Here, we sample s indirectly by drawing r € [0, 1] according
to the beta distribution Beta(a = 8,8 = 8) and computing s = so + (2r — 1)s;. The
half-width s; was determined in a hyperparameter optimization. The parameters for the
hyperparameter optimization are summarized in Tab. 1, where the intervals for choosing
s1 where found iteratively by hand over multiple trials, ensuring that the chosen value
does not lie on the boundary.

Geometric-Based Transformation As geometric transformations, we investigate flips,
rotations, random cropping to size n,,, shearing and scaling. For scaling, rotation, and
shearing, we sample s uniformly from an interval [sg — s1, So + 1] as summarized in Tab.
1, where we consider two scaling scenarios. In the case of the flip transformation, we
apply horizontal and/or vertical flips to the input, each with a probability of 0.5. Both
scaling transformations, as well as shearing, is done with p = 0.9.

Filter- and Erasing-Based Transformation As filter-based transformations, we
study Gaussian blurring as well as a sharpness adaption.

For Gaussian blurring, we pick uniformly an odd kernel size between 3 and 15 and use
a minimum and maximum sigma (these are direct inputs to the trochvision implemen-
tation) of 0.001 and 0.5, respectively and set p = 0.5. We did a hyperparameter search
for the maximal kernel-size in {7,11,15}, the maximum sigma value in [0.5,8] and p in
{0.5,0.75}.
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Table 1. Parameters used for the color- and geometric-based transformations. The center sq is
fixed where the interval half-width s; was either optimized with a hyperparameter optimization
within the given intervals or chosen as stated.

transformation‘ S0 ‘ s1 ‘ choice of s Htransformation‘so‘ s1 ‘ choice of s;
brightness |1.0]0.0175 | [0.005,0.3] rotation 0 [180°|fixed geometrically
contrast 1.0 0.1 [0.025,0.6] scale 1 1]0.15| chosen by hand
hue 0.0 ]0.00625[0.00025, 0.6] scale II 110.29 |fixed geometrically
saturation |1.0| 0.025 | [0.01,0.6] shear 0| 22° |fixed geometrically

gamma 1.0| 0.05 {[0.00625,0.6]

The sharpness adaption depends on a parameter s > 0 where for s < 1, the image
is blurred and for s > 1 sharpened and s = 1 corresponds to the identity. To define s
we sample r € [0, 1] according to Beta(a = 8,8 = 8) and set s = 2r if » < 0.5 and
s =4.5(2r — 1)+ 1 if r > 0.5. The factor 4.5 determines the maximal sharpening factor
and was chosen from a hyperparameter search in the interval [1.0, 8.0].

For erasing-based transformations, we select 3 potentially overlapping erasing rect-
angles with a size ranging from 0.01n,, to 0.2n,, and aspect ratio ranging from 0.5 to 2.
The trochvision implementation selects the corresponding parameters uniformly within
these ranges. Each rectangle is then applied with p = 0.75. The applied rectangles are
then filled with zeros (erasing (black)) or with white noise (erasing (random)). All three
parameters, the number of rectangles, the maximal size and the appliance probability
were hyperparameter optimized for the erasing (black) scenario over the sets {1,3},
[0.0257,,,, 0.4n,,,] and {0.5,0.75}, respectively.

3.4 Training Protocol

For the data augmentation experiments we calculated all triplet combinations (d, m,t).
We implemented equal training settings to ensure maximum comparability with the
baseline models, i.e., optimizer, scheduler, learning rates, weight initialization, and fixed
data loading. The only difference in the pipeline was using the investigated transformation
t in the default transformation sequence.

To implement one training cycle, we followed Chollet’s recommendations [39] on fine-
tuning. First, we trained reinitialized layers for a warm-up period before updating all
network parameters’ to prevent the negative effect of a possible large error signal on
previously learned features. We implemented this by training 10 epochs with a 1-cycle
learning rate scheduler [40], a LAMB optimizer [41] and a L2 loss regularization. Then,
followed by another training over 50 epochs, all weights are updated in the network
using the same optimizer and scheduler policies. We always selected the last model of
the training process for the evaluation to ensure that the data was seen equally.

When loading a sample x, we apply a fixed transformation sequence. We perform this
sequence to avoid artificial padded black borders in arbitrary rotation transformations.
However, to maintain comparability, the sequence is always used. (1) Resize the z to
V/2%n,, with n,, being the network input size. (2) Apply the investigated transformation
t to the resized sample with probability p. (3) Center crop the transformed sample with
the size n,,. (4) Normalize the final input by the mean and standard deviation of each
color channel. Exceptions to this sequence are erasing-based transformations, which are
applied at the end of the sequence to not corrupt the normalization process.
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We performed a hyperparameter optimization for the training settings of each baseline
model and dataset (d,m) using grid search. These final settings are reported in table 2
and used for the training of each triplet (d, m,t).

Table 2. Final parameter used for the training of each triplet (d,m,t) where the parameters
are optimized for the baseline model of every pair (d,m) € D x M.

| BACH | MIDOG
Parameter ‘ VGG ‘ Inception ‘ Densenet ‘ VGG ‘ Inception ‘ Densenet
Epochs (total) 60 60 60 60 60 60
Epochs (warm-up) 10 10 10 10 10 10
Learning Rates 0.0016 | 0.0016 0.0016 | 0.0064 | 0.0032 0.0032
Weight Decay 0.01 0.01 0.01 0.01 0.01 0.01
Batch Size 64 64 64 64 64 64

3.5 Evaluation Protocol

To account for the randomness during training given due to weight initialization of the
classification head, dropout layer and random application of augmentations, that results
in a spread of experiment outcomes, we conducted 10 experiment runs per configuration
(d,m,t). The 10 experiments only differ by a random seed given at the start of training.
This allows gathering a statistic, which makes a more accurate statement about the
effectiveness of an augmentation and also enables an expressive comparison between
them. As metric, we use the accuracy value on the plain test set for testing the model.

4 Results and Discussion

We summarize our findings for each triplet in a boxplot.* We interpret an augmentation
technique as effective if its median is above the mean of the baseline model (continuous
horizontal line) and their overlap in the interquartile range (IQR = Q3 - 1) is minimal.
We show the results for each dataset in Figure 1 and Figure 2 grouped by the augmenta-
tion strategies and the network architecture. For a clean plot appearance, a few extreme
outliers were discarded from the visualization.

For the BACH dataset, we observe an expected behavior of the baseline models. With
the rising complexity of the network architecture, the accuracy increases slightly. How-
ever, comparing the baseline with models trained using data augmentations shows that
the geometric transformations stand out. Since the histopathological data is rotation
invariant and the importance of morphological structures, we anticipated such results.
Furthermore, erasing-based augmentations also provide a beneficial effect. On the other
hand, filter-based and color-based transformations do not seem to have a positive in-
fluence, nor do they harm the model’s performance for the chosen hyperparameters.
Especially regarding the color-based augmentations methods, that finding was surpris-
ing since we presumed the manipulation of the color space to be a critical factor in the
context of histopathological data. Our hypothesis that the color distortions caused by

4 Interactive versions of the charts and more details of the results can be viewed at https://cbmi-
htw.github.io/Data- Augmentation-Histology-Website/
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Fig. 1. Results for the BACH dataset. We show the individual mean accuracies on the test set
as well as resulting boxplots for the 10 runs for the baseline configuration and the individual
transformations for all three network architectures.
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Fig. 2. Results for the MIDOG dataset. We show the individual mean accuracies on the test

set as well as resulting boxplots for the 10 runs for the baseline configuration and the individual
transformations for all three network architectures.
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the hyper-optimized transformations were too close to the identity could not be verified.
Additional experiments with artificial parameter values for the transformations to change
the input drastically lead to similar results. The results for the MIDOG dataset are essen-
tially alike. Geometric-based augmentations raise the performance, whereas color-based
and filter-based transformations have no significant effect. Indeed, the scatter and the
overlap with the baseline is so tremendous that no positive effect can be ascribed to these
transformations. Erasing-based augmentation harms the model performance significantly.
We assume that the augmentation occasionally covers the cell nucleus, which is essential
for distinguishing between mitosis and non-mitosis. However, we did not investigate this
further and leave this for future work.

Additionally, we have to mention that it took much computational effort to get the
results reliable and robust due to intensive hyperparameter optimization. We observed a
strong sensitivity towards the hyperparameters of the learning process. Tiny changes in
the training settings, e.g., learning rate or batch size, let the benefits of data augmentation
vanish in noise. Therefore, we advise using augmentation techniques in combination with
well-optimized training hyperparameters to profit from the method. We even suggest
tuning the transformation parameters for an optimal result.

5 Conclusion

We examined basic data augmentation techniques frequently used in deep learning classi-
fier training pipelines on two histopathological data. Overall geometric-based techniques
increase the model performance on such datasets. However, surprisingly, color-based aug-
mentations do not have the expected impact and are costly due to the required parameter
optimization. Next to supervised learning settings, we expect this work to improve con-
temporary semi-supervised learning methods, e.g., contrastive learning, and assume such
methods will considerably impact the training of deep learning models in the histopatho-
logical domain.
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