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Abstract. This study applies semi-supervised learning to automate the differen-
tiation of mold colonies, thereby reducing the time and cost associated with air
quality assessments. EfficientNet V2 and Normalization-Free Net (NfNet) were
trained on a dataset of mold colony images, created in a semi-supervised way.
NfNet demonstrated superior performance, particularly on non-padded images,
with explainable AI techniques enhancing interpretability. The models exhibited
generalization capabilities to environmental samples, indicating the potential for
automating mold identification and streamlining air quality monitoring, thereby
reducing manual effort and costs. Future work will focus on refining species han-
dling and integrating the system into laboratory workflows.
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1 Introduction

1.1 Problem Definition

Air quality in workplaces and production facilities affects employee well-being and op-
erational efficiency. In accordance with VDI Guideline 6022, the quality of air entering
premises via ventilation must be maintained [1]. Many factors affect indoor air quality,
including VOCs, CO2, humidity, and mold spores [2]. Mold contamination is a key factor
in maintaining a healthy indoor environment due to its ability to trigger allergic reactions
and respiratory issues. This is crucial in vulnerable settings like hospitals [3]. To assess
air quality, customers provide air samples using Petri dishes, which are incubated for
5-7 days to allow for mold growth. These colonies are then counted and differentiated to
evaluate air quality. Especially the task of differentiating, often including the usage of a
microscope, is time-consuming and costly.

1.2 Goal

To reduce the time and cost of evaluating the samples, a project was carried out with the
specific goal of developing a more efficient method for differentiating macromorphologi-
cally distinguishable mold colonies. It was determined that colonies requiring microscopic
analysis would be excluded from the project, as this would involve a more complex setup,
that is beyond the scope of this task. A central objective of the project was to demon-
strate the feasibility of training machine learning (ML) models on novel forms of data,
even when such data is scarce and lacks comprehensive annotation. Furthermore, the
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project aimed to demonstrate that existing ML models can be effectively extended and
adapted to perform more complex tasks, rather than being entirely rebuilt from scratch.
The models were trained and evaluated within this semi-supervised context to assess
their effectiveness in achieving the goal of streamlining the differentiation process and
enhancing overall efficiency.

1.3 Related Work

Semi-supervised Learning The subject of semi-supervised learning examines how to
use partially labeled datasets for training machine learning models. [4] presents a method
for classifying test data without prior exposure to some of the classes.

Explainable AI The field of explainable AI seeks to understand the behavior of com-
plex machine learning and deep learning models. This is crucial, especially in biologi-
cal and medical contexts, where such applications demand high levels of accuracy and
trust. Consequently, numerous studies have been conducted with the aim of explaining
a model’s behavior. [5] utilizes attribution maps to generate pseudo ground truths for
semi-supervised semantic and instance segmentation.

Transfer Learning Transfer learning reduces training time and cost by using previously
trained models. [6] reviews progress in transfer learning for classification, regression, and
clustering.

Machine learning models in a biological/medical context There is limited re-
search on the automatic differentiation of molds. However, numerous studies address
biological and medical sample analysis, underscoring the significance of this topic. [7]
discusses current approaches to Al in the field of nephrology. [8] utilizes a hyperspectral
imaging device and a support vector machine (SVM) to identify the growth stage of
molds on wheat grains.

2 Approach

2.1 Dataset Creation

To guarantee a minimal labeling effort and to quickly start a training on the novel data
type, a dataset was constructed in a semi-supervised manner. The dataset comprises im-
ages of Petri dishes, captured from above with a camera with a resolution of 2,144x2,144
pixels and 17.9 pixels/mm. The Petri dishes were prepared using the three-point inocula-
tion method, whereby individual known mold colonies were extracted from one dish and
transferred onto another dish [9]. This enables the regulation of the quantity and variety
of mold growth on a given sample. A total of 600 Petri dishes were prepared and incu-
bated, with each dish containing three mold colonies, as per the method’s specifications.
The samples comprised of five distinct mold species, with each distributed across 100
Petri dishes. The remaining 100 samples were colonized with 10 additional mold species,
the actual species of which were inconsequential. This approach would enable the models
to consider a more extensive set of mold morphologies. Consequently, mold colonies, for
which an uncertainty would remain, could be classified as ”other” and examined for re-
vision when required. Following the incubation and image capture, a YoloV7 model was
applied to detect the mold colonies without any classification, as this was a problem on
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which the model had previously been trained on [10]. This resulted in distinct bounding
boxes for each mold colony. The predictions were then reviewed, to correct any errors
that had occurred, which was a minor issue. As only one type of mold, which was also
known, grew on each Petri dish, all annotations for one image could simply be assigned
with the same class. The original dimensions of the mold colonies were maintained by
utilizing this approach, with each image accurately representing the natural, unaltered
dimensions of the colonies. This resulted in a diverse range of sizes for each mold image
within the dataset. Henceforth, the dataset will be referred to as the ”clean culture”
dataset.

2.2 Classifier Training

Two classification models, EfficientNet V2 [11] and Normalization Free Net (NfNet) [12],
were selected for training. Both models were initialized with pre-trained weights based
on ImageNet [13]. The mold colonies were extracted from the clean culture dataset using
the provided bounding boxes. Two training approaches were investigated. For the first
approach, the mold colony crops were padded using zero padding or resized to a size
of 1000x1000 pixels, depending on whether the image crop was larger or smaller than
1000x1000 pixels. The resulting images will be referred to as ”padded” images. The second
approach involved leaving the images unaltered, maintaining their original dimensions.
However, they were made square. These images will be referred to as "non-padded”
images. Following the padding/resizing, the images were fed through their respective
models, resulting in a single classification per mold colony. In accordance with the concept
of progressive learning as outlined in [3], adaptive image augmentation was employed to
augment the training images and increase data variety. This meant that larger images,
and consequently mold colonies, were augmented with a higher magnitude than smaller
ones. Cross-entropy loss was utilized as the loss function throughout the training process.
The models were subjected to continuous validation during training using a combination
of the F1-Score and the loss on the validation data.

2.3 Feature Inspection

The field of explainable artificial intelligence (XAI) plays a crucial role in guaranteeing
the transparency and reliability of model predictions, thus enabling the deployment of
these models in practical applications [14]. In this work, Grad-CAM (Gradient-weighted
Class Activation Mapping) [15] was used to provide visual explanations of the models’
predictions. The method highlights the areas, that contributed most to the decision,
enabling a visual inspection of the model through heatmaps.

2.4 Classifier Evaluation

The models were evaluated on both the clean culture Dataset and an ”environmental”
dataset, which represented real-world mold samples and included 640 additional anno-
tated images with a total of 12,472 individual mold colonies. The environmental Dataset
was employed exclusively for the purpose of evaluating the models’ performance in more
complex, real-world conditions. In a practical application, the dataset would not be built
from the ground up, but rather developed over time to improve the model further. This
served the purpose of a proof of concept, demonstrating the generalization ability of the
trained models. The primary metrics, used to evaluate the classification performance on
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the test datasets, were the accuracy, precision and recall. Particular interest was paid to
the handling of unknown mold colonies and uncertain decisions respectively. These cases
should be classified as ”Other”. The correct handling of such cases by a model would
facilitate the refinement of predictions by a reviewer. The evaluation also considered the
performance differences between models trained on padded and non-padded images, re-
spectively. The evaluation of models trained on padded data was conducted exclusively
using padded data, while the models trained on non-padded data were evaluated only
with non-padded data.

3 Results

3.1 Dataset Statistics

In total 600 images were taken for the clean culture dataset, which resulted in 2,116
single mold colonies from 589 Petri dishes.
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Fig. 1: Statistics for the clean culture dataset. (a) shows the distribution of classes for the
dataset. The Acronym ”sp.” denotes ”and related species”. (b) shows the distribution of
the different mold species based on their colony sizes, measured by the dimensions of the
bounding boxes surrounding each colony.

Number of Obserecd Mold Colonies

After the creation and review of the clean culture dataset, the following distribution of
mold species was found (Fig. la): 345 Aureobasidium sp., 313 Cladosporium sp., 365
Penicilium sp., 415 Hefe, 342 Aspergillus versicolor* and 336 other mold colonies with
10 different species.

A size distribution of 1,500 pixels was found across the dataset (Fig. 1b). The largest
observed mold colony was 1520 pixels wide (”Other”), the smallest 20 pixels (”Hefe”).
The mean size of the colonies was 347 pixels. The size refers to the width of the bounding
box around the mold colony.

A large size distribution was found across the dataset (Fig. 1b). This refers to the size of
the bounding box around the colony. The largest observed mold colony was 1520 pixels
large (”Other”), the smallest 20 pixels ("Hefe”). The mean size of the colonies was 347
pixels.
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3.2 Training results

Both the EfficientNet V2 as well as the Normalization-Free Net (NfNet) were trained on
the clean culture dataset (chapter 2.2).

) geqx 088 a3En 9056 cagy J0SR s34z 1001 ‘03 B 5% 99,56 3.6 1an.on
50 w
@ a
o ™
Ll &
% 50 % S0
40 a
A an
U 20
s .
n L]

Siranmy FIRY ere ) mraae Hecall AzcLracy vio “Othar” L v ety Ao npa Fiasizan foveage Focall S arecy e tLther
#hikai @ FiINa B NMNar @ e

(a) (b)

Fig.2: Comparison of training both the EfficientNetV2 (EffNet) as well as the
Normalization-Free Net (NfNet) on the clean culture dataset using both padded im-
ages (a), as well as non-padded images (b).

The training of the models on the clean culture dataset resulted in high accuracy across
all models (Fig. 2). In the case of the padded images, the EfficientNet V2 demonstrated
an accuracy of 98.6%, which represents a 2.5% improvement over the performance of
the NfNet on the same dataset. In contrast, the NfNet demonstrated a higher accuracy
of 98.6% for the non-padded images, representing a 23.7% improvement over the Effi-
cientNet V2 on the same dataset. The NfNet demonstrated the same accuracy on the
non-padded images, as the EfficientNet V2 on the padded images (98.6%).

3.3 Feature Inspection

A further inspection of the obtained results was performed, utilising Grad-CAM to iden-
tify the most important features for the models’ predictions.

Fig.3 shows the visualizations generated using Grad-CAM for both the EfficientNetV2
and NfNet models, with comparisons between predictions on a single mold colony sam-
ple from the class ”Cladosporium sp.”. The Grad-CAM visualizations illustrate that
EfficientNet V2 produces coarse highlighted regions. In the padded input, it highlights
the corners and edges of the image. The NfNet highlights specific regions of interest in
both the non-padded and padded images, without highlighting the corners or edges of
the padded input.

3.4 Evaluation on environmental Data

Fig.4 shows a comparison between a sample from the clean culture dataset and a sam-
ple from the environmental dataset. It shows, that the mold colonies growing on the
environmental sample are much smaller and occur in larger quantities.

Fig.5 shows the evaluation of both models on the environmental dataset (chapter 2.4). Ef-
ficientNet V2 demonstrated superior performance on the padded images, achieving higher
overall accuracy (43.3%) and accuracy without the class ”Other” (60.0%) compared to
NifNet (27.1% and 31.3%). In the case of the non-padded images, NfNet demonstrated
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Fig. 3: Grad-CAM visualizations comparing the EfficientNet V2 and NfNet model predic-
tions for a single mold colony image. The top row shows the results for the non-padded
input, whereas the bottom row displays the results obtained with a padded input image.
The heatmaps visualizations highlight the regions, on which the models focused. Dark
red indicates a stronger focus of the model on that region, and conversely, dark blue
indicates an uninteresting region. The depicted mold colony belongs to the class ”Cla-
dosporium sp.”
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Fig. 4: Comparison between a clean culture sample dish (a) with three colonies of Peni-
cilium sp. and a environmental sample dish (b) with a combination of different mold
species
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Fig.5: Comparison of evaluating both the EfficientNetV2 (EffNet) as well as the
Normalization-Free Net (NfNet) on the environmental dataset using both padded im-
ages (a), as well as non-padded images (b).
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superior performance in comparison to EfficientNet V2. The former achieved a higher
overall accuracy (55.1%) and accuracy without the class ”Other” (70.2%) in comparison
to the latter (31.0% and 41.7%). Overall, NfNet demonstrated an overall performance
increase in comparison to EfficientNet V2 of 24.1% in accuracy, 6.9% in average precision
and 5.8% in average recall.

4 Discussion

During the dataset creation (chapter 2.1) 11 samples had to be discarded due to contam-
ination by additional mold growth. Furthermore, on several plates, the mold grew more
extensively than anticipated, resulting in increased number of samples per dish. This
resulted in a slight imbalance in the class distribution, which was effectively mitigated
by applying class weights to the loss function during training.

The introduction of the ”Other” class, with the creation of 100 additional samples, no-
tably enhanced the diversity of the clean culture dataset, both in terms of mold size
and morphology (Fig.1b). The introduction of a broader range of mold has led to an
improvement in the classification task, as the models were able to gain a more complete
understanding of the diversity of the dataset. Training on this expanded dataset yielded
accurate and consistent results, particularly with NfNet, which demonstrated superior
performance in handling data variability compared to EfficientNet V2. While Efficient-
Net V2 encountered challenges with non-padded images due to the size variance of the
mold colonies, NfNet’s resilience to such variability enabled it to outperform EfficientNet
V2, particularly on the non-padded images.

Upon examination of the feature maps, it became evident, that there were notable dis-
crepancies between the two models. EfficientNet V2, in particular, appeared to rely ex-
cessively on the padding of images, with a corresponding reduction in focus on the mold
colonies themselves. This made it less suitable for the task at hand, as it did not consis-
tently extract meaningful features from the mold colony images. In contrast, NfNet per-
formed significantly better by concentrating on the actual features of the mold colonies,
such as the characteristic rim of the colony, as seen in Fig. 3. This enabled NfNet to
classify molds with greater reliability, especially on non-padded images.

To further evaluate the models’ performances, especially in a real-world context, a sup-
plementary annotation of 640 images was performed. These additional annotations were
crucial for validating the models’ real-world applicability. The results confirmed sev-
eral key points. NfNet exhibited a clear preference for non-padded images (55.1% accu-
racy), whereas EfficientNet V2 demonstrated superior performance with padded images
(43.3% accuracy). Nevertheless, Nfnet demonstrated superior overall performance, at-
taining higher accuracy on non-padded images than EfficientNet V2 on padded images.
However, NfNet demonstrated difficulty in generalizing its knowledge to padded images,
likely due to the introduction of artificial boundaries by padding, which interfered with
its ability to recognize features across different scales. Conversely, EfficientNet V2 ex-
hibited superior performance in handling padded images due to its reliance on padding,
though this came at the cost of its feature extraction capabilities on non-padded images.
A principal component of the evaluation process was the comparison of the accuracy of
the models in question, with and without the class named ”Other”. This comparison
proved highly beneficial in understanding the models’ability to handle cases of uncer-
tainty or unfamiliar mold colony samples. Without the ”Other” class, the models would
have been forced to classify these ambiguous cases into one of the existing classes, which
would have increased the likelihood of misclassification. The incorporation of the ” Other”
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class enabled the models to express uncertainty, thereby enhancing both generalization
and precision. This proved to be a particularly beneficial approach in the environmen-
tal data, as it provided a safety net for uncertain cases and reduced the overall error
rate. It is noteworthy that the highest accuracy achieved on the environmental data was
70% for the NfNet when the ”Other” class was excluded. This illustrates that for pre-
dictions where the model is certain, the accuracy is already considerable, leaving only a
few mold colonies that require manual review. This provides a robust basis for deploying
the models on environmental data, specifically NfNet, as it suggests that the majority of
classification work could be automated, with only a small portion requiring further in-
spection. It also offers a promising starting point for further improvements to the models,
particularly in refining their handling of uncertain cases.

5 Future Work

One avenue for future research would be to only utilize the environmental data, which
includes not only images and bounding boxes but also general class labels for mold
colonies, to start training a model. It is important to note that the bounding boxes
currently present in the environmental data set were manually annotated. In theory,
the dataset would consist solely of the raw images and general class labels, without any
bounding box information. The primary objective is to investigate the potential of an
iterative approach to construct a comprehensive dataset from the available information,
thereby eliminating the necessity for extensive manual annotation.

The classification model can be extended to more complex samples through training on
single-class samples. In the initial stage, all colonies within a sample are identified and
those belonging to known classes are excluded. If the remaining colonies belong to only
a single unknown class, the sample can be utilized for further training. The model will
classify the known colonies, leaving the unknown ones labeled as ”other,” which can then
be assigned to the remaining class.

This method could result in a comprehensive dataset comprising all mold species, reduc-
ing the necessity for manual annotation and enabling the dataset to evolve. This approach
requires a sufficient number of initial samples, particularly ”clean culture” samples, that
comprise only of mold colonies the same class, to learn effectively. Some human supervi-
sion is needed, but it offers a scalable solution that reduces manual effort.

6 Conclusion

This study shows that semi-supervised learning can be used to differentiate mold colonies.
A clean culture dataset was developed and used to train classifiers that can identify mold
species based on their macromorphological characteristics. The environmental dataset
showed that the models can generalize to real-world conditions, although performance
declined in more complex scenarios.

Automating this process could reduce costs. The ability to quickly identify mold colonies
could cut air quality evaluation costs, making routine inspections more affordable and
accessible. This could lead to more frequent assessments, contributing to cleaner air in
workplaces and public buildings.

Semi-supervised learning can enhance the efficiency of the mold differentiation process,
reducing time and cost. Future enhancements could prioritize the management of un-
known species and integrate the system into standard lab workflows. This automation
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could facilitate broader adoption of air quality monitoring, making cleaner air a more
attainable goal.
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