
Detection of Driver Drowsiness by Calculating the

Speed of Eye Blinking

Muhammad Fawwaz Yusri, Patrick Mangat, and Oliver Wasenmüller

Mannheim University of Applied Science, Germany
muhammadfawwaz.yusri@stud.hs-mannheim.de

p.mangat@hs-mannheim.de

o.wasenmueller@hs-mannheim.de

Abstract. Many road accidents are caused by drowsiness of the driver. While
there are methods to detect closed eyes, it is a non-trivial task to detect the gradual
process of a driver becoming drowsy. We consider a simple real-time detection
system for drowsiness merely based on the eye blinking rate derived from the eye
aspect ratio. For the eye detection we use HOG and a linear SVM. If the speed of
the eye blinking drops below some empirically determined threshold, the system
triggers an alarm, hence preventing the driver from falling into microsleep. In
this paper, we extensively evaluate the minimal requirements for the proposed
system. We find that this system works well if the face is directed to the camera,
but it becomes less reliable once the head is tilted significantly. The results of
our evaluations provide the foundation for further developments of our drowsiness
detection system.
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1 Introduction

Around 74% of European road users mostly agree that tired driving or microsleep is
a frequent crash cause. The statistics were gained in 2018 by E-Survey of road users’
attitudes from more than 35,000 respondents across 32 countries [1].
Thus, driver monitoring becomes of increased importance [2], since the consequence

of drowsiness can be recognized distinctively during driving. This behavior can be seen
as the driver slowly starts losing consciousness. Furthermore, one of the important char-
acteristics of drowsiness is slow eye movement [3,4]. In this paper, the movement of the
eyes will be the key criterion to distinguish between wakeful and drowsy drivers. We
implement and evaluate a practical and simple drowsiness detection algorithm that can
be easily integrated into driver-assistance systems. The system is merely based on the
eye aspect ratio and eye blinking rate, where we combine Histograms of Oriented Gradi-
ents (HOG) and linear support vector machines for reliable and accurate eye detection.
Upon extensive experiments, we determine a threshold for the eye blinking rate, below
which our algorithm triggers an alarm. We conducted extensive evaluations based var-
ious test cases, which challenge our system. While our drowsiness detection algorithm
works in principle, we identify circumstances, in which our system is less accurate. In this
way we systematically elaborate the next steps to further improve our simple drowsiness
detection system.
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2 Related Work

There are several methods to detect the features of the eyes as well as drowsiness. For
instance, some of the researches apply Viola-Jones cascade classifier to differentiate the
eyes from other facial parts [5,6]. By determining the number of pixels on the iris, cornea
and eyelid, the number of blinking and duration of the closed eyes can be calculated.
While comparing the number of blinking with the blink rate set (normal = 8-10 blinks
per minute, sleepy = 4-6 blinks per minute), drowsiness can be identified [5]. Islam et
al. [6] calculate the eye aspect ratio to determine the eye closure time and total blink
per minute. These values can then be compared to appropriate thresholds and an alarm
is activated if the value exceeds or falls below the corresponding thresholds (depending
on the critical variable to consider).
Picot et al. [7] developed a more advanced method to determine the drowsiness state

of a driver. Their idea is analogous to the use of electro-oculograms (EOG) [8], where
electrodes are placed near the eyes and the voltage signals are measured. They record
visual signs from 60 hours of driving from different drivers. Based on data-mining tech-
niques their algorithm then identifies patterns of drowsiness. Moreover, another similar
approach uses a head gear to record the pupils on a driving simulation [9]. The algorithm
computes the vertical length of dark pupils and is able to detect drowsiness from this
variable.
A development in drowsiness detection uses binarization in combination with image

filters. The system proposed by Ueno et al. [10] is able to detect the vertical position of
the eyes. Therein the algorithm takes into consideration the size of the eyes to calculate
the ratio of opened and closed eyes.
The drowsiness of the driver is addressed by detecting the state of the eyes when

they are closed for a certain period of time [11,12,13]. Therein, the relevant parts of the
eyes are detected using Haar-Cascade classifiers [11,12]. This approach seems particularly
suitable to be easily integrated into a driver-assistance system, since it is merely based
on eye detection. However, it only detects whether the driver has already fallen into the
microsleep state, which may be too late for the successful prevention of road accidents.
The goal of our work is to set up a comparably simple real-time drowsiness detection

system with minimal requirements and to challenge it in an extensive evaluation by
executing various test cases. In our work we follow Haq et al. [5] and use the eye blinking
rate to decide if a driver becomes drowsy. However, we determine the eye blinking rate
differently. We measure the eye aspect ratio (used by Islam et al. [6]) and derive the eye
blinking speed from it. In order to set the threshold for the eye blinking rate below which
the driver is considered to be drowsy, we follow Picot et al. [7] and Hayami et al. [9]
by simulating a scenario that imitates sleepiness of a driver. The threshold will also be
dependent on the individual size of the eyes [10]. After fixing the threshold experimentally,
we challenge our drowsiness detection method in a series of test cases (partly inspired
by Suhaiman et al. [13]). While the proposed method works in principle, our extensive
evaluation reveals a reduction of the reliability in certain scenarios (e.g. tilting the head
by larger angles). In this way we can systematically elaborate the next research steps to
increase the accuracy of our simple drowsiness detection system in a broader range of
scenarios.

3 Methods

The drowsiness of a driver can be anticipated by analyzing the movement of the eyelids.
The eyelids move slower than a normal blink. In this paper, we implement an algorithm
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(a) 6 points eye landmarks (b) EAR over time for an eye blinking around
frame 110

Fig. 1: Comparison between opened and closed eye [18]

that allows us to determine the speed of the blinking eye. Moreover, we use Histogram
of Oriented Gradients (HOG) and a Linear Support Vector Machine (SVM) method to
improve eye detection (4.89% higher accuracy compared to Haar-Cascade, see Rahmad
et al. [14]).

3.1 Eyes Detection

The algorithm is trained to detect the landmarks of the facial features in the dlib library
by using an ensemble of regression tress [15]. HOG image descriptor and SVM are the
method for the process training of an object [16]. There are many datasets available to
detect these landmarks and we are using the dataset from IBUG which has 68 points of
facial landmarks [17].

3.2 Eye Blinking Speed

Having detected the eyes of the driver, the next step is to determine the eye blinking
speed. Firstly, we have to detect whether the state of the eye is opened or closed. A
suitable measure to derive the state of the eye is the eye aspect ratio (EAR). We follow
the definition of Soukupová et al. [18]:

EAR =
|p2 − p6|+ |p3 − p5|

2|p1 − p4|
, (1)

where p1 to p6 are the facial landmarks as depicted in Figure 1a. When the eye is opened,
the EAR is above 0.35, but when it is closed, the value rapidly dropped below 0.15 (see
Figure 1b and Section 4 for the corresponding experiments).
Based on the flow diagram in Figure 2, firstly, the algorithm will find the average eye

size (AES) of the driver defined by

Average Eye Size (AES) =
Max EAR1 +Max EAR2 +Max EAR3

3
, (2)

i.e. we take the arithmetic mean of three measured maximum EARs. (Notice that the
accuracy of the AES can be improved by measuring more maximum EARs, but this is
at the expense of a higher computational effort.)
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Fig. 2: Flow diagram to determine the eye blinking speed

Afterwards, Max and Min Threshold will be calculated based on the average eye’s
size value. Max and Min Threshold are defined by

Max Threshold =
2

3
AES + 0.0467 , (3)

Min Threshold = Max Threshold− 0.05 . (4)

The numerical values in these equations were found empirically. After Max and Min
Threshold have been determined, the algorithm will search for the maximum value of
the EAR (denoted by Max EAR) while capturing the images frame by frame. When
the current EAR is less than the current maximum value, it will start the timer and at
the same time find the minimum value of the EAR (denoted by Min EAR). The final
minimum value is determined, when the current EAR eventually becomes larger than
the minimum value, thus the timer will stop. The blinking speed for each blink can be
calculated by

Blinking Speed =
Max EAR−Min EAR
Start Time− Stop Time . (5)

If the blinking speed becomes sufficiently low, the algorithm will activate an alarm system.
For this purpose we introduce an empirically determined drowsiness threshold. Whenever
the eye blinking speed is below this drowsiness threshold, the algorithm identifies the
driver as being in a drowsy state.

4 Evaluation

For the evaluation of our drowsiness detection system we proceed as follows. We first
show experimentally that changing the distance between eyes and camera leaves the EAR
invariant. Then, we determine the speed of the eye blinking in the wakeful and sleepy
state, respectively. Finally, we evaluate the impact of changes in the head positions on
our system.
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(a) The distance between p2 and p6 (b) EAR from both images

Fig. 3: Result for constant EAR’s evaluation

4.1 Evaluation of the Impact of Distance Variations on the EAR

When alternating the distance between eyes and camera, the apparent size of the eyes
will change. However, based on eq. (1) we expect the EAR to remain invariant.
The following evaluation shows experimentally that the EAR is indeed invariant under

modification of the distance of camera and eyes. For this purpose, two similar images
with different sizes are used instead of a live stream video. The reason is to have a fixed
EAR reference from a static image, enabling a comparison of the EAR from both images
that have different eye’s sizes. The sizes of the eyes in both images are relatively different
because one image is close to the camera and the other is far from it. The size can be
measured by calculating the difference distance between two points of facial landmarks
(e.g. p2 and p6 in Figure 3a, which are the upper and lower eyelid) in both images.
The distance between these points in Image 1 (Near, blue line in Figure 3a and

Figure 3b) is two times bigger than Image 2 (Far, orange line in Figure 3a and Figure 3b)
which is approximately 8 and 4 pixels (see Figure 3a), respectively. It shows that the
position of the eyes in Image 1 is nearer to the camera than Image 2.
The ratio between both distances is approximately 1:2. The result in Figure 3b shows

that the measured EARs for Images 1 and 2 are approximately 0.3052 and 0.3006, re-
spectively. The deviation is only 1.5%, which is acceptable for our purposes.

4.2 Evaluation for Normal Blinking

The purpose of this evaluation is to check whether Max EAR, Min EAR, and hence, the
blinking speed in eq. (5) are calculated correctly. Moreover, the average blinking speed
in the wakeful state can be determined from this test.
The participants were asked to blink normally for 8 times. The first three blinks were

analyzed by the algorithm to obtain the average size of the eyes. The other five blinks
were necessary to evaluate the EAR and the speed of the blinking. Three tests from three
participants were conducted thoroughly and the results are as follows.

Participant 1: Figure 4a shows that the maximum of the EAR, which is the highest
value of the EAR before the eyes start to close, is calculated correctly above the Max
Threshold (defined in (3)). Moreover, we see that there is only one data point below the
minimum threshold (orange line). The minimum threshold can be determined using (4).
We experimentally obtain Max EAR = 0.4572 and Min EAR = 0.1098. Figure 4b shows
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(a) Speed of normal blinking (b) Speed values from five blinks

Fig. 4: Result from Participant 1 (normal blink)

(a) Normal blinking’s speed (b) Speed values from five blinks

Fig. 5: Result from Participant 2 (normal blink)

that the values of the blinking speed are above 1 pixel/second and the average speed is
2.0418 pixel/second.

Participant 2: Figure 5a shows that Max EAR = 0.4522. However, there are two data
points below the minimum threshold, whose difference in the EAR is 0.01 pixels. The
algorithm needs to determine which value to choose as a minimum. The final minimum
value is Min EAR = 0.1401 which is the correct value because this is the value when
the eyes are completely closed. If the differences between the values below minimum
threshold is less than 0.01, then the final minimum will be the first value because this is
the point where the eye is completely shut.
We can see that Figure 5b is similar to Figure 4b where the speed values are above 1
pixel/second and the average speed is 1.5783 pixel/second.

Participant 3: In this case the EAR reaches a rather flat maximum at Max EAR =
0.3558 before dropping sharply below the minimum threshold (see Figure 6a). The mini-
mum EAR is measured to be Min EAR = 0.1049. Again, the blinking speed never drops
below 1 pixel/second (see Figure 6b). The average eye blinking rate is approximately at
2 pixels/second.
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(a) Normal blinking’s speed (b) Speed values from five blinks

Fig. 6: Result from Participant 3 (normal blink)

(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 7: Result from Participant 1 (sleepy blink)

To summarize the results of the three tests, the average speed for normal blinking
has a threshold value of 1 pixel/second. However, there are certain cases where the eye
blinking speed can slightly drop below this threshold.

4.3 Evaluation for Sleepy Blinking

For the measurement of the EARs and the eye blinking rate in the drowsy state, we
essentially repeat the previous experiments. The evaluation was conducted by testing
three participants with 5 trials. They were asked to imitate the behavior of a sleepy
driver in front of the camera by closing their eyes slowly. The corresponding data are
shown and discussed below.

Participant 1: In Figure 7a it can be seen that the number of frames from Max EAR =
0.3053 down to Min EAR = 0.1406 is larger than in the wakeful state, indicating a lower
eye blinking rate. Indeed, Figure 7b shows the smaller speed values for all five blinks.
The average speed is 0.4421 pixel/second.

Participant 2: Figure 8a has a slightly different result from the first test (see Figure 7a),
specifically regarding the values below the minimum threshold. It can be seen that the
EAR remains below the minimum threshold after Min EAR = 0.1056 has been reached.
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(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 8: Result from Participant 2 (sleepy blink)

(a) Sleepy blinking’s speed (b) Speed values from five blinks

Fig. 9: Result from Participant 3 (sleepy blink)

The participant was closing his eyes longer than usual which mimics one of the main
behaviors of a sleepy person. The values are in the range between 0.5167 pixel/second
and 0.2172 pixel/second. The average speed value is 0.3557 pixel/second.

Participant 3: The graph in Figure 9a has a similar pattern as in the second test
(Figure 8a), where there are many values below the minimum threshold. The results
from the third test (Figure 9b) came out as expected and the speed values are in the
range between 0.5176 pixel/second and 0.2292 pixel/second. The average speed of the
eye blinking is 0.35586 pixel/second.

As a result of these tests, it can be concluded that the average speed value for sleepy
eye blink is below 0.5 pixel/second and hence the drowsiness threshold to activate the
alarm will be set to 0.55 pixel/second (taking into account a safety buffer). Thus, this is
the threshold value which will activate the alarm if the speed drops below it.

4.4 Evaluation for Different Head Positions

In this last evaluation, the participant went through different situations to test the re-
liability of the system. These test cases, inspired by Suhaiman et al. [13], simulate the
scenario when the driver moves his head in different directions.
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In the first test case, the participant was instructed to move his head upwards, down-
wards, left and right while looking in front. Eventually, in the second test case, the
participant also move his head in the same direction as in the first situation but the
eyes also follow the direction of the head. For example, if the participant tilts his head
upwards, his eyes should look upwards. Table 1 shows the different situations of the head
movement and the results.

Table 1: Evaluation of different head positions
Eyes look in front

Test case Result

Head faces upward
and downward

• Able to detect eyes up to a certain degree
• Able to detect eye blinking
• EAR becomes smaller
• Smaller EAR affects finding the correct Max EAR and Min EAR

Head turns to the left
and right

• Able to detect eyes as long both eyes are visible to the camera
• Able to detect eye blinking but the speed is inaccurate
• Some speeds cannot be calculated for certain head poses

Eyes follow head’s movement

Test case Result

Head faces upward
and downward

• Able to detect eyes up to a certain degree
• EAR becomes smaller (bigger than when eyes look in front)
• Able to detect eye blinking
• Speed is less accurate

Head turns to the left
and right

• Able to detect eyes as long both eyes are visible to the camera
• Able to detect eye blinking but the speed is inaccurate
• Some speeds cannot be calculated for certain head poses

5 Conclusion

In this paper, we have shown that by calculating the speed of the eye blinking, we are
able to distinguish between a wakeful and a drowsy blink of a driver in real-time. In
particular, we can also detect the gradual process of a driver becoming drowsy. Such a
real-time drowsiness detection system plays a key role in preventing car accidents due to
microsleep.
However, our extensive evaluations also revealed some deficits, which should be ad-

dressed in future developments of our simple algorithm. Firstly, the problem where the
algorithm cannot detect the eyes in a certain angle when the head is in a certain position
(such as tilted upwards or downwards) can be improved either by identifying the rota-
tion of the head and give conditions in the program or by including additional cameras
positioned in different angles [19]. Secondly, facial expression such as smiling has an im-
pact on the measured EAR. Therefore an additional algorithm is needed to detect facial
expression, which can then be used to adapt the maximum and minimum thresholds
defined in (3) and (4). Another improvement of our algorithm regards the inclusion of
optical effects that can occur due to eye glasses.
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