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Abstract. Predicting energy production from photovoltaics (PV) is crucial for
efficient energy management. In order to apply different operating strategies, it is
necessary to predict the expected amounts of PV energy. The operating strategies
are typically optimized with regard to economic or technical goals or a combination
of both. Within this work, we show a possibility to predict PV power production
using local weather data and Neural Ordinary Differential Equations (NODE).
Based on the measured values from the PV system and an associated weather
station, the NODE is trained and validated with regard to PV production. The
measurement data are collected from the PV system of the former Campus North
of Offenburg University of Applied Sciences.
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1 Introduction

Predicting energy production from photovoltaics (PV) is crucial for efficient energy man-
agement. In order to be able to apply different operating strategies, it is necessary to
forecast the expected generation of PV power. Models for forecasting PV generation can
be categorized by the forecast horizon like (1) short-term forecasting for minutes or an
hour [1, 2], (2) middle-term forecasting for about a day [3, 4] and (3) long-term forecast-
ing for a couple of days up to months [5, 6]. It is common to use neuronal networks for
all of the forecasting horizon. Within this work, we show a possibility to predict PV
power production using local weather data using Neural Ordinary Differential Equations
(NODE) [7]. The authors of Ref. [8] modelled a lithium-ion battery to predict the behav-
ior of a lithium-ion battery using NODE and grey-box modelling. Based on the measured
values from the PV system and an associated weather station, our model is trained and
validated with regard to PV production. The measured data is collected from the PV
system of the former Campus North of Offenburg University of Applied Sciences from
the years 2017-2021. The PV system consisted of 3 strings with a nominal output of 2.16
kWp each. The strings have a collector inclination of 30° and 40° and an orientation of
18° south.
The article will be organized as follows. In the Introduction we will give an overview

of the state of the art for PV power prediction and the use of Neural ODEs for modeling
of physical systems. In the second chapter we give a short introduction to Neural ODEs
for the prediction of time series. After that, we present the data and will describe the
data preparation steps. The data preparation includes the resampling to a half hourly
base. We also applied Principal Component Analysis and Fourier Transform to the data.
After the preparation of the data we will discuss the hyper parameter tuning for the
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NODE. In the next step we present the training and validation results of the NODE for
the PV power prediction. We will conclude the article with a conclusion and discussion.

2 Overview Neural Ordinary Differential Equations

We will use Neural Ordinary Differential Equations (NODEs) [7] for the prediction of
the PV power production. NODEs can be understood as a Residual Neural Networks,
given by

x (tk+1) = hf (x (tk) , (t) , Θ) + x (tk) where h = ∆t, (1)

where the discretization h = ∆t goes to zero and the function changes from discrete to
continuous

dx

dt
= f (x (t) , t,Θ) (2)

where the Neural Network f (x (t) , t,Θ) with the parameters Θ represents the continuous
change of the hidden state x (t). Or in other words Residual Neural Networks are the
Euler discretization of NODEs [9–11]. In contrast to traditional neural network architec-
tures with discrete layers, NODEs model the continuous evolution of hidden states with
ordinary differential equations. More concrete, the input features don’t pass through a
fixed number of layers, the hidden states evolve over a time interval by using a solver.
The differential equations themselves are represented by Neural Networks and describe
the rate of change of the hidden states over time. The Neural Network is then integrated
with a solver to obtain the trajectory of the hidden states over the time. In the context
of solving ordinary differential equations, the input features can be interpreted as initial
values for the hidden states. For the training of the NODEs we are using the so-called
discretize-then-optimize approach where we backpropagate through the internal opera-
tion of the ode solver to obtain the gradients [12]. Because of the mentioned properties,
NODEs are very well suited for the modeling of time series. For the same reasons NODEs
are also well suited for the modeling of physical systems that can be expressed as differen-
tial equations. The NODEs defined above solve an initial value problem and the number
of inputs/features has to be the same as the number of outputs. In the prediction of the
PV power, the system depends not only on the initial values but also on additional in-
puts, most of all the weather. Therefore, the number of inputs is greater than the number
of outputs. We consider a so called forced nonlinear system [13]

dx

dt
= f (x (t) , u (t) , t,Θ) (3)

where additional information about the weather, e.g., is cumulated in the input vector
u (t). Note that the solution of the nonlinear system does not depend only on the initial
condition of the states x (0) but also on the input vector u (t). It is important to note
that the forced nonlinear system with the additional input vector u (t) can be solved and
trained with the same methods as the initial value problem. It has to be taken care that
the input vector u (t) is an external function of time and is not computed by the ode
solver (as the state vector x) and if the inputs u (t) are given as data points at discrete
time steps tk instead as an explicit function of time, an appropriate interpolation method
has to be chosen.
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3 Data Preparation and Analysis

Before we can train and test the NODE, we have to do the post processing of the data.
That includes the resampling to a half hourly and hourly base. We also applied Principal
Component Analysis and Fourier Transform to the data.

3.1 Resampling

To process the data, it must first be converted to the equidistance format. To this end, a
resampling procedure was devised for the purpose of incorporating hourly and half-hourly
values.
In the case of hourly sampled data at 11 a.m., the sampled values are calculated by

aggregating all values between 10:30 a.m. and 11:30 a.m., thereby avoiding any consider-
ation of future values. In order to guarantee the inclusion of data within the resampled
data set at all times, any absent values are incorporated through the utilisation of a
forward fill procedure. This is only feasible due to the fact that the recorded values of
the sensors are only stored when a change is detected; otherwise, there are no values at
specific points in time. It is important that the forward fill does not use the final value

Fig. 1. Comparison between raw data, half-hourly re-sampled data and hourly re-sampled data
for 48 hours, so that you can recognize the noon high twice.

from the resampling, but rather incorporates the last known value of the raw data into
the missing values. This guarantees the precision of the resampled value over the course
of the night. The resampled value is the average of the last hour with sunshine. As the
measured values remain constant during the night, the period without sunshine is not
considered. By using the last raw data value, the values over the night are accurate.
Figure 1 shows an example of the resampled data for 32 hours.

3.2 Principal Component Analysis (PCA)

For further insight on the relevance of the features and comparison of the resampling
rates (3.1) principal component analysis (PCA) is used. It is for data analysis purposes
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only and is not used to transform the inputs of the NODE. PCA is suitable because
the maximum variance of the data is retained in the principal components. The highest
eigenvalues in table 1 thus show the relevance of the individual features in the data set
from the point of view of variance. S represents the covariance matrix and u1 the highest
eigenvector [14].

uT1 Su1 = λ1 (4)

where λ1 is the first eigenvalue. In the hourly data set, the three largest principal com-
ponents explain 92.11 % of the variance and in the half-hourly 93.21 %. Since the three
principal components are able to explain the data set with little loss in variance, the
mean of u1 - u3 is used for each feature. Considering the variance to be obtained, the
relevance and order of the features of the hourly and half hourly dataset is similar. So
the hourly data set contains hardly any less information.

Table 1. Each column shows the values for the separate features. The values are calculated
from the three largest eigenvectors like described in the section above. The table also serves the
purpose of comparing the hourly and half hourly dataset.

Parameter Hourly sampled data Half hourly sampled data

Wind direction 0.508 0.515
Moist 0.493 0.486
Power 0.322 0.324
String 40° irradiation 0.247 0.270
Global solar irradiation 0.224 0.230
Pressure 0.198 0.105
Temperatur 0.139 0.075
Wind speed 0.093 0.033

Due to the similarity of the two datasets it is more reasonable to only focus on one
dataset.
When observing the results of table 1 it is noticeable that wind direction, moist and

power are considered more important than irradiation or temperature. This does not
meet the intuitive expectations. One has to keep in mind, that the PCA components
explain the variance in the data, and not a causal effect or dependency.
As soon as there are two similar features, usually one feature is left out. This was

not done in the case of String 40° irradiation and global solar irradiation. Both features
describe something similar.
In conclusion, PCA is used to recognise which features may be most important in

order to test which data is necessary to collect in the future. However, reduced data sets
would first have to be tested and compared with the actual application on the NODE.
Additionally, it is beneficial to note that both resampling rates are good to use.

3.3 Fourier Transform

To further validate that the derived equidistant timeseries accurately represent the non-
equidistant raw data, we generate spectrograms using Fourier transformations. The spec-
trograms are then utilized to gain insights into the prevalent frequencies within the
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equidistant timeseries. We anticipate observing the daily solar cycle reflected in our de-
rived timeseries of power production.
Different sampling frequencies are used for hourly and half-hourly timeseries to ensure

good interpretability of frequencies across all spectograms. For the hourly timeseries we
use a sampling frequency of 1/3600 Hz which equals 1 h and for half-hour timeseries we
use 1/1800 Hz which equals half a hour.

Fig. 2. Spectogram of the fourier transformation using the hourly sampled data and a sampling
frequency of 1/3600 Hz.

Figure 2 shows the resulting spectrogram for the hourly timeseries. Because of our
previously chosen sampling frequency we are able to interpret the frequency-axis in cycles
per day. The highest amplitude appears at a frequency of 1, a strong indication for the
presence of daily sun cycle within our dataset. Similar results are obtained when using
the half-hourly timeseries.

3.4 Hyperparameter tuning

The time-consuming step of finding hyperparameters is automated with Optuna’s Bay-
esian optimization [15] in combination with MLflow [16] for tracking. This allows for the
collection of hyperparameters that result in a low loss within a reasonable time frame.
The optimization takes place in a separate validation loop. An average loss for a

whole epoch is calculated from all weekly accumulated losses. Furthermore, the search
space is defined by the following parameters: tanh and Rectified Linear Unit (ReLU)
as activation functions for the neural network. ADAM, RMSprop and SGD for gradient
descent. The number of neurons from 30 to 300. Learning rate in the of magnitude from
10−5 to 10−3.
We used the optimization algorithms from PyTorch’s torch.optim package [17].
In the majority of runs, Bayesian optimisation utilizes the rectified linear unit (ReLU)

activation function and the adaptive moment estimation (ADAM) optimizer. For this
reason NODE seems to work best with ReLU and ADAM in the current use case. The
number of neurons and the learning rate don’t differ significantly for the best runs.
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Table 2. The columns 1 to 3 show the three best runs of the hyperparameter tuning under
consideration of the weekly accumulated loss.

1. 2. 3.

Activation function ReLU ReLU ReLU
Optimizer ADAM ADAM ADAM
Neurons 171 192 140
Learning rate 8.77 · 10−4 6.68 · 10−4 5.84 · 10−4

Weekly accumulated loss 94803 95228 95334

Notably, the row learning rate could be replaced by a clever choice of learning rate
scheduler.

4 Results for the prediction of PV power production

The following results were achieved using our best hyperparameter configuration (see ta-
ble 2). For our experiments we split both, the hourly and half-hourly, dataset into training
(70 %) and validation (30 %) sets. A single training example contains one week of data.
The neural network receives 6 weather features (wind direction, wind speed, temperature,
global irradiation, moisture & pressure) as well as two positional encodings (time of day
& current month) and the last preceding prediction. We observe promising convergence
results with just a few weeks of training data, reaching diminishing convergence results
within the first epoch of training (167 given example weeks).
Training is stopped after the first epoch to prevent overfitting on the dataset. The

trained model achieves a mean error of 265.40 W and a median error of 30.24 W. These
errors amount to 12.29 % and 1.40 % respectively when measured in relation to the
2.16 kWp of installed PV capacity over the validation set of 41 weeks. The large differ-
ences between these metrics can be explained by outliers which are caused by sudden
cloud shading. It’s important to mention that the focus of the project is not to predict
the impact of individual clouds on the power production but rather larger timespans (e.
g. > 3 h).
The results for predicting one week of PV power are shown in figure 3. As mentioned

above, the model is not able to predict the peaks due to cloud shading. However, the
overall prediction is in good agreement with the measurement.
A more informative (conclusive) way to measure the error might be to exclusively

evaluate the day time phases where the model is not able to receive a “free lunch” by
predicting a power output of 0 W. In this case the mean error is 401.37 W (18.58 %) and
the median error 214.12 W (9.91 %).

4.1 Conclusion

The study has demonstrated that it is feasible to forecast PV power data using a neural
ordinary differential equation (ODE). The model is capable of accurately forecasting the
photovoltaic (PV) output of individual days.
There are minor discrepancies between the original and predicted values, particularly

at the peak output observed at midday. Furthermore, the model does not anticipate
abrupt declines in output, which may be attributed to cloud cover obstructing the pho-
tovoltaic panels. Furthermore, in exceptional circumstances, the model may occasionally
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