
Leveraging Generative AI for Enhancing

Domain-Driven Software Design

Götz-Henrik Wiegand1, Filip Stepniak2, and Patrick Baier3

1 Hochschule Karlsruhe University of Applied Sciences, Germany
wigo1011@h-ka.de

2 esentri AG, Ettlingen, Germany
filip.stepniak@esentri.com

3 Hochschule Karlsruhe University of Applied Sciences, Germany
patrick.baier@h-ka.de

Abstract. Domain-Driven Design (DDD) is a key framework for developing cus-
tomer-oriented software, focusing on the precise modeling of an application’s do-
main. Traditionally, metamodels that describe these domains are created manually
by system designers, forming the basis for iterative software development. This
paper explores the partial automation of metamodel generation using generative
AI, particularly for producing domain-specific JSON objects. By training a model
on real-world DDD project data, we demonstrate that generative AI can produce
syntactically correct JSON objects based on simple prompts, offering significant
potential for streamlining the design process. To address resource constraints, the
AI model was fine-tuned on a consumer-grade GPU using a 4-bit quantized version
of Code Llama and Low-Rank Adaptation (LoRA). Despite limited hardware, the
model achieved high performance, generating accurate JSON objects with minimal
post-processing. This research illustrates the viability of incorporating generative
AI into the DDD process, improving efficiency and reducing resource requirements,
while also laying the groundwork for further advancements in AI-driven software
development.

Keywords: Generative AI, Domain-Driven Design, LoRA, QLoRA, Quantiza-
tion, Consumer GPU, PEFT, Weighted Sum, Model Assessment

1 Introduction

Creating customer-oriented software demands efficient tools and methods. A promising
approach is the Domain-Driven Design (DDD) pattern[1], a robust framework for software
development emphasizing the understanding and modeling of the application’s domain.
Initially, the software is described using Domain Specific Language (DSL) in JSON or
UML, forming a Domain Model (DM) that underpins the iterative development process.
From this DM, a code framework is derived, which is then endowed with logic to create
a prototype. This prototype generates insights for refining the DM further.
The initial DM generation is typically a manual task performed by a system designer

using a GUI tool. To enhance this process, we explore in this paper the possibility of
partially automating it with the help of generative AI. We demonstrate how genera-
tive models can learn to create syntactically correct JSON objects for describing the
DDD DM. Moreover, we show that being trained on real-world data from existing DDD
projects, the AI model can automatically generate new parts of a DM through simple
interactions with a system prompt. The AI model’s ability to produce syntactically cor-
rect JSON objects ensures machine readability, facilitating integration into existing DDD
development tools.

41



Due to data confidentiality, the use of commercial Large Language Models (LLMs)
are not an option, which led us to the constraint to develop the JSON code generator
model on resource-restrictive hardware, specifically a single consumer-grade GPU.
The final results on the test dataset yielded impressively low loss on JSON generation

and high BLEU[2] scores, underscoring the model’s proficiency. Most of the generated
JSON objects exhibited syntactical correctness with minimal post-processing, and all
JSON objects created from clear prompts were syntactically correct. The successful cre-
ation of a code generator for JSON objects in the DSL signifies a pivotal advancement
towards incorporating generative AI into the DDD-based software development process,
enhancing both efficiency and efficacy.

2 Related Work

The foundation for this work lies in the principles of DDD, as established by Eric Evans
in his seminal works[1,3]. DDD provides a strategic approach to software development,
emphasizing the modeling of complex systems based on their underlying business do-
mains. The company internal framework used for this work builds upon these principles
and knowledge regarding this were obtained from the internal documentation[4].

To address the challenges of efficient resource utilization in AI model training and
deployment, techniques such as Parameter Efficient Fine-Tuning (PEFT) were employed,
specifically the Low Rank Adaptation (LoRA) method introduced by Hu et al.[5]. Fur-
ther refinements, including quantization methods like Quantized Low Rank Adapta-
tion (QLoRA) by Dettmers et al.[6], played a crucial role in optimizing performance
on resource-constrained hardware. The model in this work was quantized to 4-bit preci-
sion using the ‘BitsAndBytes‘ library from Hugging Face[7]. This approach is supported
by research on low-precision quantization, such as the work of Sun et al.[8] and Neshaei
et al.[9].
The model used for the code generation component was Code Llama from Meta4,

proposed by Rozière et al.[10]. Other models relevant to this field include StarCoder[11]
and CodeT5[12]. Additionally, commercial AI code generation tools such as GitHub Copi-
lot [13] and Amazon CodeWhisperer [14] provide further context and reference in evaluat-
ing the landscape of AI-assisted software development.

For the evaluation of the importance of the hyperparameters after hyperparameter
Tuning we used a permutation importance analysis referencing the Random Forest Re-
gressor from Louppe [15].

For performance evaluation, two key metrics, BLEU [16] and Loss, were used to assess
the quality of the fine-tuned model. These metrics have been adopted in the evaluation
of code generation models, as discussed in the works of Chen et al.[17] and Yetiştiren et
al.[18], providing a foundation for assessing syntactic and semantic alignment in generated
outputs.

3 Methods

In this section, a comprehensive outline of the methodological approach is presented,
detailing the processes and techniques used for data handling, model development, and
evaluation.

4 https://www.llama.com/code-llama/

42



Goals and Constraints: This work explores integrating Generative AI into the soft-
ware development process within a DDD framework, focusing on automating early-stage
development by generating DMs from business requirements. The prototype uses causal
language modeling to produce Unified Modeling Language (UML) representations in
JSON format, aligning with the iterative nature of DDD.
Technical constraints include the use of open-weight models due to data privacy reg-

ulations, prohibiting commercial AI models and requiring local hosting and fine-tuning.
Additionally, the project operates under a €1000 budget for external computational re-
sources, demanding resource-efficient model selection and training. The limited dataset
further challenges the generation of unbiased, generalizable results, requiring mitigation
of data-induced biases. The research aims to evaluate the feasibility of AI-driven code
generation within these constraints, emphasizing model performance, resource manage-
ment, and compliance.

Data Basis: The dataset utilized for this study comprises 1,022 files, each containing
a single JSON object. Of these, 821 files—accounting for 80% of the dataset—originate
from a customer project, while the remaining 20% are derived from a test project. The
data represent hierarchically structured DDD logic, encoded in JSON format.
Each JSON object consists of specific key-value pairs, which are defined within a

specialized framework. These key-value structures are inherited from a metamodel, which
serves as the basis for the framework’s logic. However, the metamodel itself is not included
within the dataset, limiting direct access to the underlying inheritance structure.

Data Pre-Processing: The data pre-processing step is essential for developing a ro-
bust code generator, particularly given the dataset’s significant bias, with approximately
80% of the dataset sourced from a customer project and 20% from a test project. This
dataset, comprising 1,022 files containing completed JSON[19] objects, necessitates care-
ful handling to ensure effective model training.
The pre-processing process began with data import, followed by cleaning and ab-

straction, where high-variability keys were replaced with placeholder values to anonymize
customer-specific information. This step not only protects sensitive data but also simpli-
fies the dataset’s complexity, allowing for a clearer focus on the JSON structure. Sub-
sequently, the data was chunked into non-overlapping segments of 2,048 tokens, which
were shuffled to enhance randomness. The final step involved a double 80:20 split[20] of
the data into training, evaluation, and test sets, resulting in 64% for training, 16% for
evaluation, and 20% for testing. This structured approach to data pre-processing ensures
that the dataset is well-prepared for effective model training while maintaining com-
pliance with data privacy standards. After exportation, the datasets were versioned for
future use, solidifying the pre-processing phase as a foundational element in the overall
development process. A full process flow of data pre-processing is displayed in Figure 1.

Training and Setup: The foundation of the code generator utilizes the Code Llama
7B model, released by Meta5 proposed by Rozière et al.[10]. With a VRAM size of
approximately 25 GB, it necessitated adaptations for the limited hardware available,
including a local PC with an RTX 2080 GPU (11 GB VRAM) and a Lambda Cloud6

instance with an RTX A6000 GPU (48 GB VRAM). Due to financial constraints, the

5 https://www.llama.com/code-llama/
6 https://lambdalabs.com/service/gpu-cloud

43



44



f(x) = wLoss · (1− L(x)) + wBLEU · B(x) + wROUGE-LF1 ·R(x) (1)

f(x) = wLoss · (1− L(x)) + wBLEU · B(x) + 0 · R(x) (2)

f(x) = wLoss · L(x) + wBLEU ·B(x) (3)

Model Assessment To comprehensively evaluate the model’s performance for a gener-
ative DDD system, a three-phase assessment approach was used, as traditional metrics
alone offer limited insight. In the first phase, the evaluation metrics Loss and BLEU [16]
from both the training and test datasets were reviewed. The second phase assessed the
syntactic correctness and machine-readability of the generated JSON objects. Here, 100
JSON samples were generated from 10 clear and 10 experimental prompts. Clear prompts
specify a distinct DDD class object, guiding the model to create a corresponding JSON
object, while experimental prompts progressively reduce detail, giving the model more
room for errors and issues. If any of the generated samples exceeded the token length
limit of 4,000, post-processing was applied to ensure completeness, followed by verification
through a JSON parser. The final phase involved a qualitative review of the generated
JSON objects to identify potential errors and issues. This multi-step evaluation offers
a more detailed understanding of the model’s quality and its suitability for real-world
applications.

4 Results and Discussion

In this section, the results of the Hyperparameter Tuning, Final Model Training, and
Model Assessment are summarized and discussed.

Hyperparameter Tuning: Table 1 displays the results of the top three values for the
different evaluation metrics (objectives) from the hyperparameter tuning process.
The results from the hyperparameter tuning also allow for the derivation of the impor-

tance of individual hyperparameters. A Permutation Importance analysis was conducted
using a Random Forest Regressor [15] to assess the influence of each parameter on the
evaluation metrics (objectives) shown in Figure 2. This method helps to quantify how
changes in specific hyperparameters affect the model’s performance.
In the analysis of the results from hyperparameter tuning, a noticeable discrepancy

was observed between the expected and actual values of the ROUGE-L-F1 score. The
ROUGE-L-F 1 score was anticipated to approach 1. During hyperparameter tuning, it
reached a maximum of only approximately 0.062 in the second trial (see Table 1). Due to
this significant deviation, the ROUGE-L-F1 metric was excluded from the determination
of the optimal hyperparameters.
Subsequently, the weighted sum method described in Section 3 was applied and cal-

culated for each trial. Assuming that all evaluation metrics converge towards 1 (using the
inverse loss as 1−Loss), it can be inferred that the trial with the maximum weighted sum
defines the optimal hyperparameters, denoted as θ∗. Table 2 presents the top five trials,
ranked by their weighted sum along with their respective objectives. Figure 3 illustrates
the convergence of the weighted sum towards 1, in relation to BLEU and inverse loss,
providing a visual representation of this progression.
The maximum of the weighted sum f(x) with θ∗ = max(f(x)) | x ∈ Trials is reached

at trial 116. Concluding to θ∗ = θf(Trial116). Therefore, trial 116 defines the optimal

45



46



47



48



References

1. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley (2004)

2. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of
machine translation. In Isabelle, P., Charniak, E., Lin, D., eds.: Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania,
USA, Association for Computational Linguistics (July 2002)

3. Evans, E.: Domain-Driven Design Reference: Definitions and Pattern Summaries. Dog Ear
Publishing (2014)

4. esentri, c.: Internal Company Documentation (2024)
5. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.: Lora:
Low-rank adaptation of large language models (2021)

6. Dettmers, T., Pagnoni, A., Holtzman, A., Zettlemoyer, L.: Qlora: Efficient finetuning of
quantized llms (2023)

7. Hugging Face: Bits and bytes documentation v0.44.1. https://huggingface.co/docs/
bitsandbytes/main/en/index (2024)

8. Sun, X., Wang, N., Chen, C.y., Ni, J.m., Agrawal, A., Cui, X., Venkataramani, S.,
El Maghraoui, K., Srinivasan, V., Gopalakrishnan, K.: Ultra-low precision 4-bit training
of deep neural networks. In: Proceedings of the 34th International Conference on Neural
Information Processing Systems. NIPS ’20, Red Hook, NY, USA, Curran Associates Inc.
(2020)

9. Neshaei, S.P., Boreshban, Y., Ghassem-Sani, G., Mirroshandel, S.A.: The impact of quan-
tization on the robustness of transformer-based text classifiers (2024)

10. Rozìere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X.E., Adi, Y., Liu, J.,
Sauvestre, R., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M.,
Ferrer, C.C., Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar, F., Touvron, H.,
Martin, L., Usunier, N., Scialom, T., Synnaeve, G.: Code llama: Open foundation models
for code (2024)

11. Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone, M., Akiki, C.,
Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T.Y., Wang, T., Dehaene, O., Davaadorj,
M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O., Gontier, N., Meade, N., Zebaze, A., Yee,
M.H., Umapathi, L.K., Zhu, J., Lipkin, B., Oblokulov, M., Wang, Z., Murthy, R., Stillerman,
J., Patel, S.S., Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhattacharyya,
U., Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M., Zhdanov, F., Romero, M.,
Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H., Ebert, J., Dao, T., Mishra, M.,
Gu, A., Robinson, J., Anderson, C.J., Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried,
D., Bahdanau, D., Jernite, Y., Ferrandis, C.M., Hughes, S., Wolf, T., Guha, A., von Werra,
L., de Vries, H.: Starcoder: may the source be with you! (2023)

12. Wang, Y., Wang, W., Joty, S., Hoi, S.C.H.: Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation (2021)

13. GitHub Inc.: Github copilot. https://github.com/features/copilot (2024)
14. Amazon Web Services (AWS): AWS codewhisperer. https://aws.amazon.com/de/

codewhisperer/ (2024)
15. Louppe, G.: Understanding random forests: From theory to practice (2015)
16. Tran, N., Tran, H., Nguyen, S., Nguyen, H., Nguyen, T.: Does bleu score work for code
migration? In: 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). Volume 10., IEEE (May 2019) 165–176

17. Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan, J., Edwards, H.,
Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf,
H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser,
L., Bavarian, M., Winter, C., Tillet, P., Such, F.P., Cummings, D., Plappert, M., Chantzis,
F., Barnes, E., Herbert-Voss, A., Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang, J.,
Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A.N., Leike, J., Achiam,

49



J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M., Murati, M., Mayer,
K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S., Sutskever, I., Zaremba, W.:
Evaluating large language models trained on code (2021)

18. Yetiştiren, B., Özsoy, I., Ayerdem, M., Tüzün, E.: Evaluating the code quality of ai-assisted
code generation tools: An empirical study on github copilot, amazon codewhisperer, and
chatgpt (2023)

19. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoč, D.: Json: data model, query languages and
schema specification (2017)

20. Joseph, V.R.: Optimal ratio for data splitting. Statistical Analysis and Data Mining: The
ASA Data Science Journal 15(4) (April 2022) 531–538

21. Hugging Face: Trainer class for fine-tuning models (2023)
22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: Bleu: a method for automatic evaluation of
machine translation. In Isabelle, P., Charniak, E., Lin, D., eds.: Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, Philadelphia, Pennsylvania,
USA, Association for Computational Linguistics (July 2002) 311–318

23. Lin, C.Y.: ROUGE: A package for automatic evaluation of summaries. In: Text Summa-
rization Branches Out, Barcelona, Spain, Association for Computational Linguistics (July
2004) 74–81

24. Hugging Face: Performance considerations for training on gpus. https://huggingface.co/
docs/transformers/main/en/perf_train_gpu_one (2024)

25. Hugging Face: Lora (low-rank adaptation) for training diffusion models. https://

huggingface.co/docs/diffusers/training/lora (n.d.)
26. Bazgan, C., Ruzika, S., Thielen, C., Vanderpooten, D.: The power of the weighted sum
scalarization for approximating multiobjective optimization problems. Theory of Computing
Systems 66(1) (November 2021) 395–415

27. The Unicode Consortium: The unicode standard, version 15.0. https://www.unicode.org/
versions/Unicode15.0.0/UnicodeStandard-15.0.pdf (2022)

50


